
Dynamic Consensus Community Detection and
Combinatorial Multi-Armed Bandit
Domenico Mandaglio

DIMES - University of Calabria, Rende (CS), Italy
d.mandaglio@dimes.unical.it

Andrea Tagarelli
DIMES - University of Calabria, Rende (CS), Italy

andrea.tagarelli@unical.it

Abstract—Community detection and evolution has been largely
studied in the last few years, especially for network systems that
are inherently dynamic and undergo different types of changes in
their structure and organization in communities. Because of the
inherent uncertainty and dynamicity in such network systems,
we argue that temporal community detection problems can prof-
itably be solved under a particular class of multi-armed bandit
problems, namely combinatorial multi-armed bandit (CMAB).
More specifically, we propose a CMAB-based methodology for
the novel problem of dynamic consensus community detection,
i.e., to compute a single community structure that is designed
to encompass the whole information available in the sequence
of observed temporal snapshots of a network in order to
be representative of the knowledge available from community
structures at the different time steps. Unlike existing approaches,
our key idea is to produce a dynamic consensus solution for
a temporal network to have unique capability of embedding
both long-term changes in the community formation and newly
observed community structures.

Index Terms—Community detection in temporal networks,
Multi-armed bandit problems, Complex network models

I. INTRODUCTION

The problem of identifying the community behavior at
any given time is often jointly considered with the need for
modeling the change events in the communities and tracking
their evolution [5]. While there exist various models for
time-varying network data (i.e., series of snapshots, interval
graphs, or interactions), detecting, monitoring and correlating
the events of community evolution is particularly challenging.
In this context, one issue is related to making an appropriate
choice of timestep width that can provide sufficient resolution
to detect temporal events. An even bigger issue is that the com-
munity evolution events are of different type (e.g., birth/death,
growth/decay, merge/split), and may occur at different rates
(i.e., smoothly or drastically, at varying degrees).

Despite the variety of methodologies developed for the
community detection and evolution problem, each of the
existing approaches is designed to address a limited subset

of challenges by adopting a particular perspective on the
problem [9]. Some methods provide heuristics that try to
discover a sequence of mappings for the community structures
independently derived at each time step (e.g., [10], [2], [20]);
by contrast other methods aim to detect a community structure
for the current topology as dependent on the structure(s) from
prior time step(s), according to some parameter models to
control the temporal smoothness (e.g., [12], [8], [21], [22]).
Further strategies include updating a community structure in
order to reflect newly observed changes [23], [17], [1]), or
aggregating the various snapshots of the network in order to
enable a static community detection method (e.g., [16]).

All the aforementioned approaches nonetheless share the
nature of graph-based unsupervised learning paradigm to ad-
dress the community detection problem. However, this may
not be in principle the best way to do, primarily because
of the inherent uncertainty about the environment, i.e., the
temporal network system, and the interactions within it, i.e.,
structural changes and consequent decisions to take about the
node memberships and structure of the communities. Within
this view, reinforcement learning is instead conceived to learn
from interrelated actions with unknown “rewards” ahead of
time, and choose which actions to take in order to maximize
the reward. A further key aspect is to achieve a trade-off
between making decisions that yield high current rewards,
or exploitation, and making decisions that discard immediate
gains in favor of better future rewards, or exploration.

Multi-armed bandit (MAB) problems are well-suited to
model the aforementioned trade-off [18], [14]. However, they
cannot be directly applied to our problem since they deal with
individual actions to take at any time. In this work, we focus
on a particular extension of MAB, called combinatorial multi-
armed bandit (CMAB) [3], [7], to deal with choosing a set
of actions, i.e., a set of community assignments that consti-
tute a whole community-structure. Moreover, the exploration-
exploitation trade-off would correspond to balancing over time
between the need for embedding long-term changes observed
in the community formation and the need for capturing short-
term effects and newly observed community structures.

In this regard, we devise a solution to the problem of
community detection in a temporal network by introducing the
novel concept of dynamic consensus community structure, that
is, loosely speaking, a community structure that encompasses
the knowledge about newly observed as well as the previously
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detected communities in a temporal network. Surprisingly,
little research has been conducted on the temporal counterpart
of the consensus community detection problem [15], [19]. One
main issue is that the consensus community structure is to be
inferred from a knowledge base (i.e., set of community struc-
tures) that is not fully available at a given initial time, but it
evolves over time along with the associated temporal network.
In [6], a representative clustering solution is determined by
aggregation of multiple runs of an MCMC algorithm; however,
the approach is restricted to dynamic stochastic block model
graphs, and focuses on some dynamics of community only
(i.e., birth, death, split, merge). In [13], the common structure
in the snapshots of a temporal network is studied based on
the optimization of a function incorporating Markov steady-
state matrices, similarity matrices and community membership
matrices; however, the approach assumes there are same
nodes and number of communities for each snapshot (resp.
slice) of the temporal (resp. multiplex) network. Inter-snapshot
relationships are captured in [4] by grouping nodes based on
topological similarity, instead of structural equivalence.

We formulate the novel problem of dynamic consensus
community detection in time-evolving networks, and originally
propose a general algorithmic scheme based on the CMAB
paradigm. One important feature of our approach is that, unlike
existing ones, it does not require to match and/or track the
evolution of communities over time, and it does not depend
on specific community-change events or on restricted graph
models. Our proposed algorithmic scheme is conceived to be
versatile in terms of the bandit strategy as well as in terms of
the static community detection algorithm used to identify the
communities at each snapshot network.

II. PROBLEM STATEMENT

We are given a set V of entities (i.e., users) in a social
environment, and a temporal network G as a series of graphs
over discrete time steps (G1, G2, . . . , Gt, . . .), where Gt =
〈Vt, Et〉 is the graph at time t, with set of nodes Vt and set of
undirected edges Et. We denote with G≤t a series of graphs
observed until time t. Each node in Vt corresponds to a specific
instance from the set Vt ⊆ V of entities that occur at time t.
The snapshot graphs can share different subsets of entities.

Given any Gt, we denote with C(t) a community structure
for Gt, which is a set of non-overlapping communities, and
is assumed to be unrelated to any other C(t′) (t′ 6= t), both in
terms of number of communities and set of entities involved.
We will use the term dynamic ensemble at time t, to refer to a
set of community structures incrementally provided along with
the snapshot graphs observed until time t, and we denote it as
E≤t = {C(1), . . . , C(t)}. We consider the following problem:

Input: Given the temporal graph sequence G≤t and
associated dynamic ensemble E≤t, for any time t ≥ 1,

Goal: Compute a community structure, called dynamic
consensus community structure and denoted as C∗≤t, which
is designed to encompass the information from G≤t to be
representative of the knowledge available in E≤t.

Given G≤t and E≤t, the representation model underlying
the dynamic consensus being discovered over time is a matrix
M we call dynamic co-association (or consensus) matrix
(DCM). The size of this matrix is initially Vt×Vt with t = 1,
and at a generic time t is |V| × |V|. The (i, j)-th entry of
M, denoted as mij , stores the probability of co-association
for entities vi, vj ∈ V , i.e., the probability that vi and vj are
assigned to the same community, in the observed timespan.

Computing meaningful co-associations for the nodes in
the temporal network and properly maintaining and updating
the consensus community structure over time is challenging.
On the one hand, we want to avoid (re)computation of the
consensus from scratch, e.g., from a predetermined, finite
set of community structures as in conventional consensus
community detection [15], [19]; on the other hand, we also
do not want to depend on any mechanism of tracking of the
evolution of communities [5]. More importantly, the dynamic
consensus community structure should be able to embed long-
term changes in the community formation as well as to capture
short-term effects and newly observed community structures.

To address the above problem, we adopt a perspective that
is different from the typical unsupervised learning approach
to community detection problems. We argue that the dynamic
consensus community detection problem is well-suited to be
solved under a reinforcement learning (RL) framework [18].
If we interpret the decisions to learn about the assignments of
nodes to communities as interrelated actions, with unknown
rewards ahead of time, then it emerges the need for learning
which actions to take in order to maximize a reward, which
is related to how much benefit is gained by node assignments
to communities. By learning from interactions, RL becomes
particularly useful when there is uncertainty in the learning
environment: this clearly holds in our setting due to the dy-
namics of the network, the evolution of its structural changes,
and consequent effect on the community structure.

Actions affect not only the immediate reward, but also the
next step in taking actions, and so the subsequent rewards.
Thus, a further key aspect in our problem is the dilemma
between “exploitation”, i.e., making decisions that yield high
current rewards, vs. “exploration”, i.e., making decisions that
sacrifice current gains with the prospect of better future
rewards. Multi-armed bandit (MAB) refers to a class of
stochastic resource allocation problems in the presence of
alternative (competing) choices, that are paradigms of the
exploration-exploitation trade-off. In this work, we focus on a
particular class of MAB problems, called combinatorial multi-
armed bandit (CMAB), whose distinguishing key is in the
need for choosing a set of actions at any time.

A. Background on combinatorial multi-armed bandit (CMAB)

In the traditional MAB framework, there exists a set of m
arms, associated with a set of random variables {Xi,t |1 ≤
i ≤ m, t ≥ 1}, whose values range in [0, 1]. Xi,t indicates the
random outcome of triggering, or playing, the i-th arm in the t-
th round. The random variables {Xi,t| t ≥ 1} associated to the
i-th arm are independent and identically distributed. Moreover,



in a non-stationary context, those variables may change [11].
Also, variables of different arms may not be independent.

CMAB is an extension of MAB that introduces the concept
of superarm as a set of (base) arms that can be triggered
together [3], [7]. At each round t, a superarm A is chosen and
the outcomes of the random variables Xi,t, for all ai ∈ A,
are revealed. Moreover, the base arms belonging to A may
probabilistically trigger other base arms not in A, thus re-
vealing their associated outcomes. Let Rt(A) be a random
variable denoting the reward obtained at round t by playing
superarm A. This reward depends, linearly or non-linearly, on
the base arms that constitute the superarm and other possibly
triggered base arms. The objective of a CMAB method is to
select at each round t the superarm A that maximizes the
expected reward E[Rt(A)], in order to eventually maximize
the cumulative expected reward over all rounds. According to
the exploration-exploitation trade-off, at each trial the bandit
may decide to choose the superarm with the highest expected
reward (given the current mean estimates for the base arms)
or to select a superarm discarding information from earlier
rounds with the aim of discovering the benefit from adopting
some previously unexplored arm(s) [7], [3].

III. TRANSLATING THE PROBLEM OF DYNAMIC
CONSENSUS COMMUNITY STRUCTURE INTO CMAB

In our context, each pair of entities 〈vi, vj〉 in G≤t is
hypothetically associated with an unknown distribution (with
unknown mean µij) for the probabilities of co-association over
time, whose mean estimate is the entry mij in DCM. Each
observation of a community structure of a snapshot network,
can be considered as a sample from such distributions. More-
over, these may change their mean over time, thus our CMAB
setting is non-stationary (cf. Sect. II-A): in fact, for groups
of entities which tend to maintain their membership to stable
communities over time, we will observe a similar degree of
co-association between pairs of entities belonging to the same,
stable community; however, in general, the network structure
along with the communities is subjected to several changes.

Each pair of entities 〈vi, vj〉 corresponds to a base arm,
whose semantics is “to assign vi and vj to the same community
at a given time”. We will use symbol c(t)i to denote the
community of vi at round t. A superarm A at round t is a
set of arms, i.e., a set of pairs 〈vi, vj〉 such that c(t)i = c

(t)
j .

Playing a superarm A at each round t corresponds to a
two-stage process: (i) inducing a community structure from
the played superarm and (ii) performing stochastic relocation
of nodes to neighbor communities. The stochastic nature of
the process depends on both the random order with which we
consider the node relocations and on the fact that, according to
the optimization of a quality criterion, an improvement due to
relocation is accepted with a certain probability. Intuitively,
this allows us to account for uncertainty in the long-term
overall quality improvement of the consensus due to local
relocations at a given time; for instance, it is unknown if the
relation that explains two users share the same community at
a given time could become meaningless in subsequent times.

Algorithm 1 General scheme of CMAB algorithm for Dy-
namic Consensus Community Detection
Input: Temporal graph sequence G≤T (T ≥ 1), bandit strategy B,

(static) community detection method A.
Output: Dynamic consensus community structure C∗≤T .

1: Initialize the dynamic consensus matrix M
2: for t = 1 to T do
3: if B decides for EXPLORATION then
4: Find a community structure C(t) on Gt using A
5: else {EXPLOITATION}
6: Partition the DCM-graph using A
7: Infer a community structure C(t) on Gt based on the DCM-

graph partitioning
8: end if
9: Project the community memberships from C(t) onto G≤t

10: Stochastic optimization of C∗≤t

11: Update the DCM matrix M based on C∗≤t

12: end for
13: return C∗≤T

After playing a superarm A, the rewards associated to the
entity pairs (base arms) corresponding to the status of com-
munities after the relocation phase, are revealed; these pairs
include both the nodes that did not move from their community
and the arms 〈vi, vj〉 triggered with the accepted relocations,
i.e., such that node vi was moved to the community of vj .
Furthermore, for the base arms that were neither selected
nor triggered (i.e., pairs of nodes that were not in the same
community before and after the relocation phase), we assume
an implicit reward of zero that corresponds to the observation
of the “no-coassociation” event. (This is in line with the
possibility in CMAB of enabling the probabilistic triggering
of all base arms.) The reward of a superarm corresponds to the
quality of the community structure at the end of the relocation
phase, which is a non-linear function of the base arms’
rewards. More specifically, we might resort to modularity as
quality criterion for a community structure.

IV. AN ALGORITHMIC SCHEME FOR THE CMAB-BASED
DYNAMIC CONSENSUS COMMUNITY DETECTION PROBLEM

To solve the dynamic consensus community detection prob-
lem, we propose the general scheme in Algorithm 1.

This starts with the initialization of the dynamic consensus
matrix M as an identity matrix (Line 1); in fact, at the initial
time, no information has been processed yet, and hence each
entity-node has co-association with itself only.

At each round t, the algorithm chooses to perform either ex-
ploration or exploitation, according to a given bandit strategy
(B). Intuitively, in the exploitation phase, we seed an oracle
(i.e., a conventional method for community detection) with the
mean estimates of co-association of the current DCM to infer
the communities in the new snapshot graph observed at time
t; by contrast, in the exploration phase, the new communities
are identified using the t-th graph only. In either phase,
the community structure generated at time t is finally used
to produce a superarm that will correspond to the dynamic
consensus community structure up to t (C∗≤t).



At each round t, in either of the phases, the algorithm
invokes a community detection method A. This is just required
to deal with (static) simple graphs. While in the exploration
phase it directly applies to the snapshot graph Gt (Line 4), to
handle the exploitation phase, the method should also be able
to deal with weighted graphs: in this case, A is executed on
the graph GM built from the current DCM matrix in such a
way that the edge weights in GM correspond to the entries of
M (Line 6). Next, from the obtained partitioning CM of GM,
the knowledge about the community memberships of entity
nodes in CM is used to infer a community structure C(t) on
the snapshot graph Gt (Line 7). Each community in C(t) will
have node set corresponding to exactly one community in CM,
and edge set consistent with the topology of Gt. Any entity v
that newly appears in Gt (i.e., v ∈ Vt ∧ v /∈ Vt′ , ∀t′ < t) and
is disconnected will form a community in its own.

The dynamic consensus community structure C∗≤t, for each
t, is generated in two steps. The first step (Line 9) corresponds
to a simple projection of the community memberships from
C(t) onto G≤t. The second step (Line 10) corresponds to
stochastic refinement of the candidate C∗≤t obtained at the
previous step. This refinement can be performed through local
search optimization, which will relocate some nodes from their
assigned community in C∗≤t to a neighboring one by acting
greedily w.r.t. a quality criterion, such as modularity.

Finally, we devise the phase of DCM update (Lines 11) fol-
lowing a standard principle in reinforcement learning, whereby
as the agent explores further, it is capable of updating its
current estimate according to a general scheme of the form
newEstimate← oldEstimate+α(target− oldEstimate),
which intuitively consists in moving the current estimate in the
direction of a “target” value, with slope α. In our setting, we
want to control the update of co-associations by subtracting a
quantity α of resource from the co-associations of each node,
at time t, and redistributing this quantity among the nodes
in c

(t)
i , for each vi. This redistribution corresponds to the

reward of a single co-association, i.e., given vi, the reward
of assigning any vj to the same community of vi.

V. CONCLUSION

In this paper, we originally brought the CMAB paradigm
into the context of community detection in temporal networks.
We formulated the novel problem of dynamic consensus com-
munity detection, and proposed a general algorithmic scheme
to solve it, which is versatile to the bandit strategy and to the
static community detection method.

Our ongoing research concerns the development of a fully
defined algorithm for the above problem, which leverages
on (multilayer) modularity optimization in the stochastic re-
finement of the dynamic consensus solution. Besides the
aforementioned features of versatility, the algorithm should
be able to deal with temporal networks that can have different
structure and evolution rate.

More details on this research are available at http://people.
dimes.unical.it/andreatagarelli/cmab-dccd.
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