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Abstract. Community detection in temporal networks is an active field
of research, which can be leveraged for several strategic decisions, in-
cluding enhanced group-recommendation, user behavior prediction, and
evolution of user interaction patterns in relation to real-world events. Re-
cent research has shown that combinatorial multi-armed bandit (CMAB)
is a suitable methodology to address the problem of dynamic consen-
sus community detection (DCCD), i.e., to compute a single community
structure that is conceived to be representative of the knowledge avail-
able from community structures observed at the different time steps.
In this paper, we propose a CMAB-based method, called CreDENCE,
to solve the DCCD problem. Unlike existing approaches, our algorithm
is designed to provide a solution, i.e., dynamic consensus community
structure, that embeds both long-term changes in the community for-
mation and newly observed community structures. Experimental evalu-
ation based on publicly available real-world and ground-truth-oriented
synthetic networks, with different structure and evolution rate, has con-
firmed the meaningfulness and key benefits of the proposed method, also
against competitors based on evolutionary or consensus approaches.

1 Introduction

Community detection and evolution in temporal networks has been largely stud-
ied in the last few years, mainly focusing on graph-based unsupervised learning
paradigms (e.g., [3,10,8,24]). Nonetheless, detecting and tracking the evolution of
the change events that occur in the communities remains challenging [5], which
is partly due to the uncertainty and dynamicity underlying the different types
(e.g., birth/death, growth/decay, merge/split) and evolution rates of structural
changes in time-evolving network systems.

In this regard, we have recently explored the opportunity of adopting the
multi-armed bandit (MAB) paradigm, which is conceived to learn how to per-
form actions in an uncertain environment [17]. Indeed, in the problem under
consideration, the uncertainty is inherent to the temporal network system and
the structural changes of its communities, while actions correspond to node as-
signments to communities. Moreover, each action is associated with a notion



of “reward” that determines how much benefit is gained by (a set of) node as-
signments to communities. Within this view, MAB methods are well-suited to
model the exploitation-exploration trade-off [21,13], i.e., balancing between mak-
ing decisions that yield high current rewards or making decisions that sacrifice
current gains with the prospect of better future rewards. Moreover, to deal with
choosing a set of actions, i.e., a set of community assignments that constitute a
whole community-structure, a particular extension of MAB problems is needed,
which is called combinatorial multi-armed bandit (CMAB) [4,7].

In this work, we focus on the dynamic consensus community detection (DCCD)
problem, that is, given a sequence of temporal snapshots of a time-evolving
network, we want to compute a single community structure to be represen-
tative of the knowledge available from community structures detected in the
different snapshot networks. Remarkably, unlike in consensus community detec-
tion [14,22], the knowledge on the community structures from which a consensus
must to be inferred is not available at a given initial time, but it evolves over
time along with the associated temporal network. In this respect, here we follow
the directions outlined in [17] for the CMAB-based DCCD problem, and propose
a fully defined instantiation of the algorithmic scheme.

Note that existing approaches to related problems involving a notion of com-
munity representative in temporal networks [6,12] may suffer from restrictions
on the network model, such as fixed set of nodes and number of communities for
each snapshot of the temporal network [12], or on selected types of community
dynamics [6]. By contrast, our proposed approach does not incur such issues.

Our contributions can be summarized as follows:
• We develop CreDENCE – CMAB-based Dynamic ConsENsus Community
DEtection method. To achieve the exploration-exploitation trade-off, our algo-
rithm is designed to balance over time between the need for embedding long-term
changes observed in the community formation and the need for capturing short-
term effects and newly observed community structures. Moreover, CreDENCE is
conceived to be versatile in terms of the static community detection approach
used to identify the communities at each snapshot, and robust in terms of a
number of parameters that control the CMAB-learning rate, temporal smooth-
ness factors, and the node-relocation bias.
• We provide insights into technical as well as computational complexity aspects
of CreDENCE; upon this, we propose an enhancement of CreDENCE to ensure
its linear complexity in the size of the temporal network.
• Our experimental evaluation was conducted using 5 real-world networks and
ground-truth-oriented synthetically generated networks, including comparison
with 3 competing methods. Results have provided useful indications about the
quality of the consensus solutions obtained by CreDENCE, which is able to cope
with temporal networks having different evolution rates.

2 Problem statement
We are given a set V of entities (e.g., users in a social environment) and a tempo-
ral network G as a series of graphs over discrete time steps (G1, G2, . . . , Gt, . . .),



where Gt = 〈Vt, Et〉 is the graph at time t, with set of nodes Vt and set of undi-
rected edges Et. We denote with G≤t a series of graphs observed until time t.
Each node in Vt corresponds to a specific instance from the set Vt ⊆ V of entities
that occur at time t. The snapshot graphs can share different subsets of entities.

Given any Gt, we denote with C(t) a community structure for Gt, which is
a set of non-overlapping communities, and is assumed to be unrelated to any
other C(t′) (t′ 6= t), both in terms of number of communities and set of entities
involved. Let E≤t = {C(1), . . . , C(t)} be a dynamic ensemble at time t, i.e., a
set of community structures associated to the snapshot graphs. We consider the
following problem:

Problem 1 (Dynamic Consensus Community Detection (DCCD)). Given
a temporal graph sequence G≤t and associated dynamic ensemble E≤t, for any
time t ≥ 1 compute a community structure, called dynamic consensus community
structure and denoted as C∗≤t, which is designed to encompass the information
from G≤t to be representative of the knowledge available in E≤t.

Given G≤t and E≤t, the dynamic consensus being discovered over time can be
represented as a matrix M we call dynamic co-association (or consensus)
matrix (DCM). Its size is initially Vt × Vt with t = 1, and at a generic time
t is |V| × |V|. The (i, j)-th entry of M, denoted as mij , stores the probability
of co-association for entities vi, vj ∈ V, i.e., the probability that vi and vj are
assigned to the same community, in the observed timespan.

Given the incremental nature of Problem 1, unlike in conventional consensus
community detection [14,22], we want to avoid (re)computation of the consensus
from scratch at any time t. We also do not want to depend on any mechanism
of tracking of the evolution of communities [5]. More importantly, the dynamic
consensus community structure should be able to embed long-term changes in
the community formation as well as to capture short-term effects and newly
observed community structures. To address Problem 1, in [17] we proposed a
CMAB-based methodology, whose principles are recalled in the next section.

2.1 Dynamic consensus community detection as a CMAB problem

Review of CMAB. We are given m base arms, where each arm i is associated
with a set of random variables {Xi,t |1 ≤ i ≤ m, t ≥ 1}, where Xi,t ∈ [0, 1]
indicates the random outcome of triggering, or playing, the i-th arm in the t-th
round. The random variables {Xi,t| t ≥ 1} of the i-th arm are independent and
identically distributed. Moreover, in a non-stationary context, those variables
may change [9]. Variables of different arms may not be independent.

At each round t, a superarm (a set of base arms) A is chosen and the outcomes
of the random variablesXi,t, for all ai ∈ A, are revealed. Moreover, the base arms
belonging to A may probabilistically trigger other base arms not in A [4,7], thus
revealing their associated outcomes. Playing a superarm A at round t gives a
reward Rt(A) modeled as a random variable, which is a function of the outcomes
of the triggered base arms. The objective of a CMAB method is to select at
each round t the superarm A that maximizes the expected reward E[Rt(A)],



in order to maximize the cumulative expected reward over all rounds. At each
round, the bandit may decide to choose the superarm with the highest expected
reward (exploitation) or to select a superarm discarding information from earlier
rounds (exploration) with the aim of discovering the benefit from adopting some
previously unexplored arm(s) [7,4].

Adaptation to DCCD. In our context, each pair of entities 〈vi, vj〉 in G≤t
is a base arm and it is hypothetically associated with an unknown distribu-
tion (with unknown mean µij) for the probabilities of co-association over time,
whose mean estimate is the entry mij in DCM. Each observation of a commu-
nity structure of a snapshot network can be considered as a sample from such
distributions. Moreover, since the network and community structures can vary,
the co-association distributions may also change their mean over time, thus the
DCCD setting is non-stationary. Including a base arm 〈vi, vj〉 in a superarm
corresponds to “assign vi and vj to the same community at a given time”. If we
denote with c(t)i the community of vi at round t, a superarm A at round t is a
set of pairs 〈vi, vj〉 such that c(t)i = c

(t)
j .

According to the framework in [17], playing a superarm A at each round t
consists of stochastic optimization that considers node relocations to neighbor
communities. The stochastic nature of the process depends on both the random
order with which we consider the node relocations and on the fact that, accord-
ing to the optimization of a quality criterion, an improvement due to relocation
is accepted with a certain probability. Intuitively, this allows us to account for
uncertainty in the long-term overall quality improvement of the consensus due
to local relocations at a given time; for instance, it is unknown if the relation
that explains two users share the same community at a given time could become
meaningless in subsequent times. After playing a superarm A, the rewards asso-
ciated to the entity pairs (base arms) corresponding to the status of communities
after the relocation phase, are revealed; these pairs include both the nodes that
did not move from their community and the arms 〈vi, vj〉 triggered with the
accepted relocations, i.e., such that node vi was moved to the community of vj .
For the base arms that were neither selected nor triggered (i.e., pairs of nodes
that were not in the same community before and after the relocation phase),
we assume an implicit reward of zero that corresponds to the observation of
the “no-coassociation” event. (This is in line with the possibility in CMAB of
enabling the probabilistic triggering of all base arms.)

The reward of a superarm corresponds to the quality of the community struc-
ture at the end of the relocation phase, which is a non-linear function of the base
arms’ rewards. More specifically, we resort to modularity as quality criterion for
a community structure. Let Xt

ij be the reward associated to the base arm corre-
sponding to node pair 〈vi, vj〉 at time step t. The reward of the played superarm
A (leading to a consensus structure C∗≤t after the stochastic relocation of nodes)
can be defined in terms of the base arms’ rewards as follows:

Rt(A) =
1

d(V [1..t])

∑
i,j

t∑
`=1

βt−`
(
Alij −

k`ik
`
j

d(V [1..t])

)
δ(Xt

ij) (1)



where k`i is the degree of vi in the `-th snapshot, Alij is the (i, j)-th entry of
the adjacency matrix of the `-th snapshot graph, d(V [1..t]) is the total degree
of the multiplex graph including snapshots from the first one to the t-th (i.e.,
d(V [1..t]) =

∑t
`=1

∑
v∈V`

d(v)), β ∈ (0, 1), and δ(Xt
ij) = 1 if Xt

ij > 0, 0 otherwise.
The stochastic nature of the above defined reward is determined by the random
variables Xt

ij . In Sect. 3.2, we will define a generalization of the above reward
equation that allows us to focus on selected snapshots of the networks.

3 The CreDENCE method

To solve the dynamic consensus community detection problem, we develop a
CMAB-based method called CreDENCE – CMAB-based Dynamic ConsENsus
Community DEtection, which is sketched in Algorithm 1.

Initially, the dynamic consensus matrix M is set as an identity matrix (Line
1), which reflects that no information has been processed yet, and hence each
entity-node has co-association with itself only. At each round t, the algorithm
chooses to perform either exploration or exploitation, according to a given ban-
dit strategy (B). Intuitively, in the exploitation phase, we seed an oracle (i.e.,
a conventional method for community detection) with the mean estimates of
co-association of the current DCM to infer the communities in the new snapshot
graph observed at time t; by contrast, in the exploration phase, the new com-
munities are identified using the t-th graph only. In either phase, the community
structure generated at time t is finally used to produce a superarm that will
correspond to the dynamic consensus community structure up to t (C∗≤t).

Besides the involvement of a conventional community detection method A
and a bandit strategy B to control the exploration-exploitation trade-off, we
introduce a few parameters to ensure robustness in the algorithmic scheme of
CreDENCE: (i) the learning rate α for the update of the mean estimates (i.e.,
mij entries), (ii) the relocation bias λ, and (iii) the temporal smoothness factor
β and window size ω to control the amount of past knowledge for the step
of node-relocations. Nonetheless, some of these parameters are interrelated, or
reasonable values can be chosen as default.

Another remark on CreDENCE concerns its incremental nature: whenever a
new step of evolution is observed, say at T+1, the last-update status of the DCM
matrix along with G≤T+1 will become the input for a further CMAB round.

3.1 Finding communities

At each round t, CreDENCE invokes a community detection method A. This is
just required to deal with (static) simple graphs. While in the exploration phase
it directly applies to the snapshot graph Gt (Line 4), to handle the exploitation
phase, the method should also be able to deal with weighted graphs: in this case,
A is executed on the graph GM (Line 7), which is built from the current DCM
matrix in such a way that the edge weights in GM correspond to the entries
of M (Line 6). Next, from the obtained partitioning CM of GM (Line 7), the
knowledge about the community memberships of entity nodes in CM is used to



Algorithm 1 CMAB-based Dynamic ConsENsus Community DEtection
(CreDENCE)
Input: Temporal graph sequence G≤T (T ≥ 1), (static) community detection method
A, bandit strategy B, learning rate α ∈ (0, 1), relocation bias λ ∈ [0, 1], temporal
smoothness β ∈ (0, 1), temporal window width ω ≥ 1.

Output: Dynamic consensus community structure C∗≤T .
1: M← I|V1|×|V1|
2: for t = 1 to T do
3: if B decides for Exploration then
4: C(t) ← findCommunities(Gt,A)
5: else {Exploitation}
6: GM ← buildDCMGraph(M)
7: CM ← partitionDCMGraph(GM,A)
8: C(t) ← inferCommunities(Gt, CM)
9: end if
10: C∗≤t ← project(C(t),G≤t)
11: C∗≤t ← evalRelocations(G≤t, C∗≤t, λ, β, ω) {Using Eq. (3)}
12: M← updateDCM(M, C∗≤t, α) {Using Eq. (4)}
13: end for
14: return C∗≤T

infer a community structure C(t) on Gt (Line 8). Each community in C(t) will
have node set corresponding to exactly one community in CM, and edge set
consistent with the topology of Gt. Any entity v that newly appears in Gt (i.e.,
v ∈ Vt ∧ v /∈ Vt′ , ∀t′ < t) and is disconnected will form a community in its own.

It should be noted that, although any method can in principle be used as A,
our preferred choice is towards efficient, modularity-optimization-based methods,
such as [1]. This is motivated for consistency with our choice of using (multi-
plex) modularity as quality criterion in the (consensus) community structure
refinement, as discussed next in Sect. 3.2.

3.2 Generating the dynamic consensus community structure

The dynamic consensus community structure C∗≤t, for each t, is generated in
two steps. The first step (Line 10) corresponds to a simple projection of the
community memberships from C(t) onto G≤t. The second step (Line 11) corre-
sponds to stochastic refinement of the candidate C∗≤t obtained at the previous
step. This stochastic refinement is performed through local search optimization,
which is designed to relocate some nodes from their assigned community in C∗≤t
to a neighboring one by acting greedily w.r.t. a quality criterion.

As previously anticipated, one appropriate choice refers to modularity. How-
ever, to account for the multiplexity of G≤t as well as the dynamic aspects, we
modify the definition of modularity to include the temporal window by which
the modularity context is set. The reason behind this choice is twofold: (i) to
focus on a limited number of latest snapshots of the network, and (ii) to reduce
the computational burden in the local search optimization.



Given C∗≤t, temporal-window width ω and temporal smoothness factor β,
we denote with d(V [t−ω+1..t]) the total degree of the multiplex graph including
snapshots from the (t−ω+1)-th to the t-th and, for any community c, d`(c) and
dint` (c) are the total degree and the internal degree of c, respectively, measured
w.r.t. edges of the `-th snapshot network only. We define the (ω, β)-multiplex
modularity of C∗≤t as follows:

Q(C∗≤t, ω, β) =
1

d(V [t−ω+1..t])

∑
c∈C∗≤t

t−ω+1∑
`=t

βt−`
(
dint` (c)− (d`(c))

2

d(V [t−ω+1..t])

)
(2)

As previously mentioned, the meaning of β is to smooth the contribution of
earlier snapshots in the computation of the quality of the dynamic consensus,
i.e., lower values of β will penalize older snapshots. It is worth noting that β
may take a role that is opposite to that of the learning rate α in Algorithm 1.
Therefore, by default, we set β = 1− α.

The local search optimization, at any time t, evaluates the possible improve-
ment in terms of modularity due to the relocation of nodes vi that lay on the
boundary of their assigned communities towards one of the communities that
at time t contain nodes linked to vi. By denoting with ci the initial community
of a boundary node vi, and simplifying the modularity notation with function
symbol Q, the modularity variation, denoted as ∆Qi, corresponding to moving
vi to a neighbor community is as follows:

∆Qi = Q(ci \ {vi})−Q(ci) + max
cj∈NC(t)

i

(Q(cj ∪ {vi})−Q(cj)) (3)

where NC(t)
i is the set of neighbor communities for node vi at time t. If ∆Qi > 0,

then there is a single chance to accept the relocation of vi to cj with probability
1− λe−λ∆Qi , with λ ∈ [0, 1] to control the bias towards relocations.

3.3 Updating the dynamic consensus

The DCM-update scheme in Algorithm 1 (Lines 12) follows a standard principle
in reinforcement learning, whereby as the agent explores further, it is capa-
ble of updating its current estimate according to a general scheme of the form
newEstimate← oldEstimate+α(target−oldEstimate), which intuitively con-
sists in moving the current estimate in the direction of a “target” value, with
slope α. In our setting, we want to control the update of co-associations by sub-
tracting a quantity α of resource from the co-associations of each node, at time
t, and redistributing this quantity among the nodes in c

(t)
i , for each vi. This

redistribution corresponds to the reward of a single co-association, i.e., given vi,
the reward of assigning any vj to the same community of vi. Upon this, given
α ∈ [0, 1] and any (i, j)-th entry of M, we define the update equation as:

m
(t+1)
ij = m

(t)
ij + α

(
1

|c(t)i |
[vj ∈ c(t)i ]−m(t)

ij

)
=

α

|c(t)i |
[vj ∈ c(t)i ] + (1− α)m(t)

ij (4)

where [x ∈ X] denotes the Iverson-bracket notation for the indicator function.



Properties of the update equation. It should be noted that the reward
1/|c(t)i | produces the effect of making it stronger the co-association between nodes
belonging to smaller communities. This is consistent with a major finding in a
recent study proposed in [11] whereby co-memberships of nodes in larger com-
munities are statistically less significant (than in smaller ones), because members
in such communities have limited influence upon each other in the network. A
further reason to favor co-associations in smaller communities is to compensate
for a typical bias relating to a tendency of producing large communities (e.g.,
resolution limit in modularity-optimization based methods).

Another property of the update rule in Eq. (4) is the exponential smoothing
of earlier actions, with constant α [21], i.e., the update scheme leads to weight
recently obtained rewards more heavily than earlier ones, and the reward of a
past co-association between two nodes decreases exponentially in time.

Proposition 1. Eq. (4) ensures that the rewards of past co-association between
any two nodes vi, vj decreases by a factor (1− α)t−s, with s ≤ t.

Proof. Let us assume that nodes vi, vj are assigned to the same community
and remain therein over time. By repeated substitutions, we derive that:

m
(t+1)
ij =

α

|c(t)i |
+ (1− α)m(t)

ij =
α

|c(t)i |
+
(
1− α

)[ α

|c(t−1)i |
+
(
1− α

)
m

(t−1)
ij

]
=

=
α

|c(t)i |
+

(1− α)α
|c(t−1)i |

+ (1− α)2m(t−1)
ij =

=
α

|c(t)i |
+

(1− α)α
|c(t−1)i |

+ ...+
(1− α)t−1α
|c(1)i |

+ (1− α)tm(1)
ij =

= (1− α)tm(1)
ij +

t∑
s=1

(1− α)t−s α

|c(s)i |
.

Also, it can easily be shown that Eq. (4) ensures that M is a stochastic
matrix.

3.4 Speeding up CreDENCE

The time complexity of the basic version of CreDENCE is determined by the
update operations on M given by Eq. (4) and by the community detection step.
As concerns the update step, we first observe that the relocation of nodes can be
executed in O(|Vt|+ ω|Et|) = O(|V|+ ω|Et|), since for each node we look at its
neighbor communities, which are bounded by the degree of the node. Evaluating
the modularity improvement (Eq. (3)) is O(ω), provided that ω indexes are
maintained to store the degree of communities for each of the last ω time steps,
and to store the number of links of v with nodes in community c at time t, for
each node v, time t and community c. Therefore, since we constrain the number
of relocation trials to be of the order of the number of nodes, the overall time
cost of relocation of nodes is O(|V|+ω|Et|). However, the update of M involves



a number of entries that is at least equal to
∑
ci∈C(t) |ci|

2. This could lead to a
cost that becomes quadratic in the number of entities as soon as some of the
communities have size of the order of V. Moreover, the spatial complexity of
CreDENCE is determined by the number of non-zero entries of M, which again
could be quadratic in the number of entities.

As discussed above, maintaining and updating the DCM matrix represents
a computational bottleneck of CreDENCE. By definition, M can easily become
dense, yet noisy, since many co-associations may be weak (e.g., outdated co-
associations), thus corresponding to poorly significant consensus memberships.
One way to alleviate this issue is to prune the matrix by zeroing those entries
that are below a predefined threshold; in practice, this will unlikely be enough
to solve the issue. Rather, we notice that it is more appropriate to introduce
a constraint of linkage between nodes when evaluating Eq. (4): this is not only
consistent with the requirement of having as high density as possible within a
(consensus) community (as studied in [22]), but it will also impact on making
M sparser. However, one drawback would be the loss of symmetry in M.

We hence propose a modification to the update equation that both integrates
the linkage constraint and preserves the stochasticity property of the matrix:

m
(t+1)
ij =

α

|c(t)i ∩N
(t)
i |

[vj ∈ c(t)i ∩N
(t)
i ] + (1− α)m(t)

ij , (5)

where N (t)
i denotes the set of neighbors of vi in Gt. The entry mij now is meant

to store the strength of co-association of vi conditionally to the topological link
with vj . Moreover, the graph representation of M becomes directed: to keep the
scheme presented in Algorithm 1, we simply modify the definition of the con-
sensus graph GM so that the weight of an edge (vi, vj) is set to max{mij ,mji}.
This allows us to preserve the importance of a co-association between any two
entities when finding a community structure in GM.

We incorporate the above modifications into Algorithm 1 to obtain an en-
hanced, efficient version of CreDENCE. It can be noticed that the time complex-
ity of CreDENCE now becomes O(T × (|V| + |E≤T |)), while the spatial cost is
determined by the size of M, i.e., O(|E≤T |), with E≤T =

⋃T
t=1Et.

4 Evaluation methodology

Data. We used 5 real-world, publicly available temporal networks: Epinions [18],
Facebook [23], Wiki-Conflict [2], Wiki-Elections [15], YouTube [19]. Table 1 re-
ports statistics for each evaluation network. Note that with terms ‘static’, ‘ha-
pax’, and ‘dynamic’ we mean nodes/edges that are present in all snapshots,
present in only one snapshot, and present in multiple, not necessarily contigu-
ous snapshots, respectively. Also, symbols e+t and e−t refer to the fraction of
new edges and disappeared edges, respectively, when transitioning from the t-1-
th to the t-th snapshot; analogously for nodes corresponding to symbols v+t ,
v−t . Note also that, while the friendship-based networks (i.e., Facebook and
YouTube) evolve very smoothly, the other selected networks undergo to drastic
changes in terms of disappearing/appearing edges and nodes. Preprocessing of



Table 1: Main characteristics of our evaluation data. Mean ± standard deviation
values refer to all snapshots in a network.

#entities #edges #time node set edge % static % hapax % dynamic
(|V|) steps coverage semantics (nodes, edges)(nodes, edges)(nodes, edges)

Epinions 131 828 727 344 32 0.05 trust/distrust (0.1, 0) (80.8, 95.6) (19, 2.2)
Facebook 63 731 17 676 817 30 0.87 friendship birth (82.9, 2.7) (0.2, 0) (16.9, 1.9)
Wiki-Conflict 118 100 2 272 276 82 0.05 wikipage editing (0, 0) (60.1, 83.4) (38.9, 5.8)
Wiki-Election 7 118 102 906 44 0.08 vote assignment (0, 0) (49.7, 95.7) (50.3, 2.2)
YouTube 3 223 589 41 955 741 8 0.62 friendship birth (33.4, 6.7) (12.4, 4) (54.2, 11.6)

network evolution rate
e+t =

|Et\Et−1|
|Et| e−t =

|Et−1\Et|
|Et−1|

v+t =
|Vt\Vt−1|
|Vt| v−t =

|Vt−1\Vt|
|Vt−1|

Epinions 0.97 ± 0.007 0.98 ± 0.008 0.65 ± 0.08 0.69 ± 0.06
Facebook 0.02 ± 0.01 0 0.006 ± 0.006 0
Wiki-Conflict 0.95 ± 0.02 0.95 ± 0.02 0.52 ± 0.1 0.51 ± 0.12
Wiki-Election 0.99 ± 0.004 0.99 ± 0.005 0.5 ± 0.07 0.49 ± 0.08
YouTube 0.16 ± 0.06 0 0.14 ± 0.06 0

the networks and statistics about the temporal width resolution are available at
http://people.dimes.unical.it/andreatagarelli/cmab-dccd.

We also used synthetic networks generated through RDyn [20], which is de-
signed to handle community dynamics and change events (merge/split). RDyn
adopts the notion of stable iteration to mimic ground-truth communities; in
particular, when a community structure reaches a minimum quality (i.e., conduc-
tance), then it is recognized as ground-truth. We believe that the latter property
of RDyn is important since it fills a lack in the literature about the unavailablilty
of ground-truth data for (large) time-evolving multilayer networks.

Competing methods. We conducted a comparative evaluation of Cre-
DENCE with the following three methods, which are also based on modularity
optimization and do not require an input number of communities:
– DynLouvain [10]: it applies Louvain method [1] to a condensed network based

on the topology of the snapshot at current time t and community structure
at time t-1.

– EvoAutoLeaders [8]: this is an evolutionary method based on a notion of
community as a set of follower nodes congregating close to a potential leader
(i.e., the most central node in the community).

– M-EMCD∗ [16]: this is a parameter-free enhanced version of the consensus-
based method in [22], which filters noisy co-associations via marginal likeli-
hood filter and optimize the multilayer modularity of the consensus w.r.t. a
static ensemble of community structures.
Evaluation settings. We varied the learning rate α in {0.15, 0.5, 0.85} ∪

{α∗}, where α∗ is an adaptive learning rate set to the fraction of times a base
arms is used, and the temporal-window width ω from 2 to 10; however, unless
otherwise specified, we used the setting ω = 2, β = 1 − α to emphasize the
importance of few, more recent snapshots. We set the relocation bias λ to 0, i.e.,
a relocation is accepted if it leads to an improvement in modularity (Eq. (3)). To
reduce sensitivity issues due to the randomness in the exploration-exploitation
interleaving, we averaged the CreDENCE perfomance scores over 100 runs.

http://people.dimes.unical.it/andreatagarelli/cmab-dccd


To detect communities from each snapshot (i.e., A in Algorithm 1), we
used the classic Louvain method [1]. This choice is not only consistent with
our modularity-optimization-based relocation phase, but also with the choice of
static algorithm in most approaches for dynamic community detection [5].

As for the bandit strategy B, we resorted to ε-greedy, i.e., with a small prob-
ability ε we take an exploration step, otherwise (i.e., with probability 1 − ε)
an exploitation step. We set ε = 0.1, which revealed to lead to a performance
stability trade-off for networks having different evolution rates.

5 Results
Impact of learning rate. As shown in Fig. 1, the number of detected con-
sensus communities generally increases for higher values of α, because this more
quickly leads to lose memory of past co-associations, thus causing proliferation
of communities in the consensus solution. Moreover, on the networks having
high rate of structural change, the trends for the various settings of α tend to
deviate in correspondence of the time steps associated with most change events;
by contrast, in the networks characterized by a smooth evolution (i.e., Facebook
and YouTube), the consensus sizes are very similar while varying α.

Figure 1 also showsmultilayer modularity [22] results by varying α. Lower val-
ues of α generally lead to higher modularity except for Facebook and YouTube
networks. This is explained since, in networks having high rate of structural
change, a lower learning rate helps remember past co-associations, thus informa-
tion about older snapshots. Moreover, in such networks we observe a decreasing
trend in modularity since the consensus must embed an increasing number of
snapshots, each very different from the others (cf. Table 1). By contrast, for Face-
book and YouTube, a high learning rate reveals to be beneficial to discovering
consensus communities with higher modularity.

We also measured the Strehl and Ghosh’s NMI between the dynamic con-
sensus and the community structure of snapshot, for each time step (Fig. 1).
As expected, the two structures are more similar (i.e., higher NMI values) as
α increases, which implies weighting more the current snapshot in the consen-
sus generation. Analogous remarks were drawn for the average cumulative NMI,
which is computed at each t by averaging the NMI between the dynamic con-
sensus at t and the community structures over all snapshots at any time t′ ≤ t.

Impact of temporal-window width. Higher values of ω will lead to
better modularity performance, which is explained since the criterion function
optimized in the relocation phase becomes closer to the measured modularity as
ω increases. We indeed observed modularity improvements up to 0.04 (at any
time step) already for ω = 4, while negligible increments occurred as ω > 4. Gen-
erally, no evident differences were observed in terms of NMI and consensus size,
which indicates relative robustness of CreDENCE with variation in ω. Results can
be found at http://people.dimes.unical.it/andreatagarelli/cmab-dccd.

Impact of the exploration step probability. The default setting ε = 0.1
revealed to lead to a suitable trade-off for our networks, which have different
evolution rates. In fact, as shown in Fig. 2, with α = 0.5 and default setting for

http://people.dimes.unical.it/andreatagarelli/cmab-dccd
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Fig. 1: Size of the dynamic consensus by CreDENCE (left), multilayer modularity
of the CreDENCE solutions (mid), and NMI between the CreDENCE consensus
community structure and the snapshot’s community structure, at each t (right).

the other parameters, higher values for the exploration probability lead to more
“unstable” results since more exploration steps are performed, thus information
derived from a newly observed snaphot impact more on the consensus update.
This is particularly evident in networks with high rate of structural changes,
such as Epinions and Wiki-Conflict. On the contrary, for networks with a smooth
evolution (e.g., Facebook), a higher number of exploration steps is beneficial in
terms of modularity and NMI.
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Fig. 2: Multilayer modularity and NMI by varying exploration-step probability
ε, on Epinions (left), Facebook (mid), and Wiki-Conflict (right).
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Fig. 3: Time performance on RDyn synthetic networks.

Efficiency evaluation. To assess the scalability of CreDENCE, we used
RDyn [20] to generate different synthetic networks by varying the number of
snapshots and community events.1 Figure 3 reports the execution times for dif-
ferent settings of α, over a temporal network with 1K entities and 1K time steps.

We observe that, for different change rate of community events (Fig. 3(a)–
(b)), CreDENCE always scales linearly with the number of considered timesteps,
which is consistent with our complexity analysis (cf. Sect. 3.4). Also, the execu-
tion time is generally higher for the adaptive learning rate α∗ as well as for lower
values of α (i.e., as the past co-associations are preserved longer), thus making
the DCM matrix denser and more costly to process. Figure 3(c) shows the ex-
ecution times of our method with α = 0.85, on three synthetic networks with
10, 30, 50 community events, respectively. As expected, the higher the evolution
rate, the higher the execution time; nonetheless, CreDENCE again shows to scale
linearly with the size of the network.
1 Experiments were carried out on a Linux (Mint 18) machine with 2.6 GHz Intel Core
i7-4720HQ processor and 16GB ram
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Table 2: Increment percentages of CreDENCE
w.r.t. DynLouvain and M-EMCD∗. Values cor-
respond to the increment percentages aver-
aged over all snapshots in a network, using
the average best-performing α.

DynLouvain M-EMCD∗

Modularity NMI Modularity NMI
Epinions 1789.0% -2.2% 13.9% 37.6%
Facebook 3.5% 9.4% 60.0% 37.5%
Wiki-Conflict > 1.0E+05% -1.8% -6.8% 37.6%
Wiki-Election 660.5% -2.1% 32.0% 58.5%
YouTube -0.1% 8.4% 21.1% 11.6%
RDyn 2.0% 24.97% 103.22% 81.1%

Fig. 4: Competitors vs. CreDENCE on RDyn: modularity (top), NMI (bottom).

Comparison with competing methods. Table 2 and Fig. 3 compare
CreDENCE with the other methods. Concerning modularity results, our method
outperforms both DynLouvain and M-EMCD∗, where performance gains vs. the
former (resp. latter) are outstanding for networks with high (resp. low) rate of
structural change. NMI by CreDENCE is always significantly higher than the
competitors’ ones, especially against M-EMCD∗; one exception is represented
by a gap of just 2% w.r.t. DynLouvain for three networks with high evolution
rate. Moreover, we emphasize that CreDENCE also outperforms the evolution-
ary EvoAutoLeaders, as long as the competitor results were available—indeed, it
incurred in processing-time issues (tens hours) in all networks but the smallest
ones, i.e., Wiki-Election and RDyn.

6 Conclusion
In this paper, we proposed CreDENCE, a CMAB-based method for the problem
of dynamic consensus community detection in temporal networks. Experimental
evidence on real and synthetic networks has shown the meaningfulness of the
consensus solutions produced by CreDENCE, also revealing its unique ability of
dealing with temporal networks that can have different evolution rate.

We plan to further investigate on the impact of different bandit strategies
(e.g., UCB, Thompson sampling), and on learning our model parameters to best
fit the community structure and evolution in a given temporal network.
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