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Abstract. Dung’s Argumentation Framework (AF) has been ex-
tended in several directions. An interesting extension, among others,
is the Epistemic AF (EAF) which allows representing the agent’s be-
lief by means of epistemic constraints. In particular, an epistemic
constraint is a propositional formula over labeled arguments (e.g.
in(a), out(c)) extended with the modal operators K and M that
intuitively state that the agent believes that a given formula is cer-
tainly or possibly true, respectively. In this paper, focusing on EAF,
we investigate the complexity of the possible and necessary variants
of three canonical problems in abstract argumentation: verification,
existence, and non-empty existence. Moreover, we explore the rela-
tionship between EAF and incomplete AF (iAF), an extension of AF
where arguments and attacks may be uncertain. Our complexity anal-
ysis shows that the verification problem in iAF can be naturally re-
duced to the verification in EAF, while it turns out that a similar result
cannot hold for the necessary (non-empty) existence problem.

1 Introduction

In the last decades, Formal Argumentation has become an impor-
tant research field in AI [40]. Argumentation has potential applica-
tions in several contexts, including e.g. modeling dialogues, negotia-
tion [7, 31], and persuasion [54]. Dung’s Argumentation Framework
(AF) is a simple yet powerful formalism for modeling disputes be-
tween two or more agents [33]. An AF consists of a set of arguments
and a binary attack relation over the set of arguments that specifies
the interactions between arguments: intuitively, if argument a attacks
argument b, then b is acceptable only if a is not. Hence, arguments
are abstract entities whose status is entirely determined by the attack
relation. An AF can be seen as a directed graph, whose nodes rep-
resent arguments and edges represent attacks. Several argumentation
semantics—e.g. grounded (gr), complete (co), preferred (pr), sta-
ble (st), and semi-stable (sst) [33, 24]—have been defined for AF,
leading to the characterization of σ-extensions, that intuitively con-
sist of the sets of arguments that can be collectively accepted under
semantics σ ∈ {gr, co, st, pr, sst}.

Example 1. Consider AF Λ1 = 〈A1 = {a, b, c, d}, R1 =
{(a, b), (b, c), (c, d), (d, c)}〉 whose graph is shown in Figure 1
(left). Λ1 describes the following scenario. A party planner invites
Alice (a), Bob (b), Carl (c) and David (d) to join a party. Alice
replies that she will join the party. However, due to their rivalry, (i)
Bob replies that he will join the party if Alice does not; (ii) Carl
replies that he will join the party if both Bob and David do not; (iii)
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Figure 1: AF Λ1 of Example 1 (left); AF Λ3 of Example 3 (right).

David replies that he will join the party if Carl does not. This sit-
uation can be modeled by AF Λ1, where an argument x states that
“(the person whose initial is) x joins the party”. Under the preferred
(stable, and semi-stable) semantics, Λ1 has extensions E1 = {a, c}
and E2 = {a, d}, meaning that either Alice and Carl, or Alice and
David will attend the party. 2

Argumentation semantics can be also defined in terms of la-
belling [10]. Intuitively, a σ-labelling for an AF is a total func-
tion L assigning to each argument the label in if it is ac-
cepted, out if it is rejected, and und if it is undecided under σ.
For instance, L1 = {in(a),out(b), in(c),out(d)} and L2 =
{in(a),out(b),out(c), in(d)} are the σ-labellings for AF Λ1 of
Example 1 under semantics σ ∈ {st, pr, sst}. Herein, L1 and L2

correspond to E1 and E2, respectively.
Despite the expressive power and generality of Dung’s frame-

work, in some cases it is difficult to accurately model domain knowl-
edge by an AF in a natural and easy-to-understand way. For this
reason, Dung’s framework has been extended by introducing fur-
ther constructs, such as preferences [5, 51], weights [18, 19, 17],
supports [28, 25, 44], topics [21], and constraints [29, 9, 55, 2], to
achieve more comprehensive, natural, and compact ways for repre-
senting useful relationships among arguments.

In the following we focus on an interesting extension of Dung’s
framework with epistemic constraints called Epistemic Argumenta-
tion Framework (EAF) [55]. Herein, an epistemic constraint repre-
sents the belief of an agent that must be satisfied. In particular, an
epistemic constraint is a propositional formula over labeled argu-
ments (e.g. in(a), out(c)) extended with the modal operators K
and M. Intuitively, Kφ (resp. Mφ) states that the considered agent
believes that φ is always (resp. possibly) true. The semantics of an
EAF is given by the set of so-called σ-epistemic labelling sets. Intu-
itively, a σ-epistemic labelling set is a collection of σ-labellings that
reflects the belief of an agent. More in detail, every σ-epistemic la-
belling set consists of σ-labellings of the underlying AF and it is a
maximal set of σ-labellings that satisfy the epistemic constraint.

Example 2. Consider the AF Λ1 = 〈A1,R1〉 of Example 1, and



assume that the party planner believes that Carl will certainly join
the party. This can be modeled by EAF ∆2 = 〈A1,R1, ϕ〉, where
the epistemic constraint ϕ = Kin(c) states that c must be accepted
in every solution. For σ ∈ {st, pr, sst}, ∆2 has one σ-epistemic
labelling set consisting of L1 only, meaning that the party planner
concludes that Alice and Carl will attend the party. 2

An EAF may have multiple σ-epistemic labelling sets.

Example 3. Consider the AF Λ3 = 〈A3,R3〉 shown in Figure 1
(right), where A3 = A1, R3 = R1 ∪ {(b, a)}, and A1 and R1

are as defined in Example 1. The set of its σ-labellings with σ ∈
{st, pr, sst} is {L1,L2,L3}, whereL1 andL2 are the σ-labellings
for AF Λ1 of Example 1 and L3 = {out(a), in(b),out(c), in(d)}.
Then, EAF ∆3 = 〈A3,R3,Kin(a)∨Kin(d)〉 has two σ-epistemic
labelling sets, {L1,L2} and {L2,L3}, representing the scenarios
compliant with the belief of the party planner that Alice or David
will certainly join the party. 2

However, the existence of a σ-labelling is not guaranteed in EAF.
That is, even for semantics prescribing at least one σ-labelling for
the underlying AF (e.g. σ ∈ {gr, co, pr, sst}), we can have EAFs
having no non-empty σ-epistemic labelling set.

Example 4. The EAF ∆4 = 〈A3,R3,K(in(a) ∧ in(b))〉 (that
differs from the EAF ∆3 of Example 3 in the epistemic constraint
only) has no grounded, complete, preferred, stable, and semi-stable
labelling, meaning that any σ-epistemic labelling set is empty for any
σ ∈ {gr, co, st, pr, sst}. 2

Besides the problem of deciding the existence of a σ-labelling,
two additional fundamental problems investigated in AF are i) non-
empty existence, that is deciding if there is a σ-labelling prescribing
a non-empty set of accepted arguments, and ii) verification, that is
deciding whether a given assignment of labels in {in,out,und} to
each argument is a σ-labelling. In general, the (non-empty) existence
and verification problems are important to understand the behavior
of argumentation semantics. For this reason, the complexity of these
problems have been explored in detail for AF [36] as well as for
several frameworks extending AF, such as incomplete AF (iAF) [14,
13, 57], where arguments and attacks may be uncertain.

In this paper, we investigate the complexity of the verification, ex-
istence, and non-empty existence problems in EAF and explore the
relationship between EAF and iAF.
Contributions. Our main contributions are as follows.

• We first introduce the possible and necessary variants of the ver-
ification, existence, and non-empty existence problems in EAF
by taking into account the fact that an EAF may have multi-
ple σ-epistemic labelling sets. Intuitively, given an EAF, the pos-
sible (resp. necessary) verification problem consist in deciding
whether a candidate labelling—a given assignment of the labels in
{in,out,und} to each argument—belongs to any (resp. every)
σ-epistemic labelling set, with σ ∈ {gr, co, st, pr, sst}. The
possible (resp. necessary) existence problem consists in deciding
whether there is σ-labelling in any (resp. every) σ-epistemic la-
belling set. Moreover, the possible (resp. necessary) non-empty
existence problem consists in deciding whether there is a σ-
labelling prescribing a non-empty set of accepted arguments in
any (resp. every) σ-epistemic labelling set.

• We explore the complexity of the possible and necessary variants
of the verification, existence, and non-empty existence problems
for EAF, showing that in most cases these problems are harder

than those for AF. In particular, the complexity of the verifica-
tion problems for EAF increases of one level in the polynomial
hierarchy w.r.t. that for AF (cf. Table 1). Moreover, the complex-
ity of the possible and necessary existence problems for EAF in-
crease of at least one level (in the polynomial hierarchy) w.r.t. that
for AF, except for the stable semantics for which it remains the
same. The complexity of the possible and necessary non-empty
existence problems for EAF increase of one level w.r.t. that for
AF for both the preferred and semi-stable semantics, while it re-
mains the same for the complete and stable semantics. A complete
picture of the complexity of the (non-empty) existence problems
is given in Table 2, where the results for iAF are reported as well.

• Finally, we analyze the relationship between EAF and iAF, show-
ing that (possible and necessary) verification in iAF can be re-
duced to (possible and necessary) verification in EAF under com-
plete, preferred, stable and semi-stable semantics.

2 Preliminaries
In this section, after recalling some complexity classes, we review
the AF-based frameworks considered in the paper.

2.1 Complexity Classes
We recall here the main complexity classes used in the paper. NP is
the class of decision problems solvable by a non-deterministic Tur-
ing machine in polynomial time, while coNP is the class of decision
problems whose complement is in NP. Moreover, the classes Σpk and
Πp
k with k ≥ 0 are defined as (see e.g. [53]):

• Σp0 = Πp
0 = P ;

• Σp1 = NP and Πp
1 = coNP ;

• Σpk = NPΣ
p
k−1 and Πp

k = coΣpk, ∀k > 0.

For a complexity class C, NPC denotes the class of problems
that can be solved in polynomial time using an oracle in C by a
non-deterministic Turing machine. Under the standard complexity-
theoretic assumptions, we have that Σpk ⊂ Σpk+1 ⊆ PSPACE and
Πp
k ⊂ Πp

k+1 ⊆ PSPACE ∀k ≥ 0. A problem is said to be C-hard
if there is a polynomial-time many-to-one reduction to it from any
problem in C. Additionally, if the considered problem belongs to C,
then it is said to be C-complete. Also, a problem is C-hard if there is
a polynomial-time reduction to it from a C-complete problem.

2.2 Argumentation Framework
An abstract Argumentation Framework (AF) is a pair 〈A,R〉, where
A is a set of arguments and R ⊆ A×A is a set of attacks. If (a, b) ∈ R
then we say that a attacks b.

Given an AF Λ = 〈A,R〉 and a set S ⊆ A of arguments, an
argument a ∈ A is said to be i) defeated w.r.t. S iff ∃b ∈ S such that
(b, a) ∈ R, and ii) acceptable w.r.t. S iff for every argument b ∈ A
with (b, a) ∈ R, there is c ∈ S such that (c, b) ∈ R. The sets of
defeated and acceptable arguments w.r.t. S are as follows (where Λ
is understood):

• Def(S) = {a ∈ A | ∃(b, a) ∈ R . b ∈ S};
• Acc(S) = {a ∈ A | ∀(b, a) ∈ R . b ∈ Def(S)}.

Given an AF 〈A,R〉, a set S ⊆ A of arguments is said to be:

• conflict-free iff S ∩Def(S) = ∅;
• admissible iff it is conflict-free and S ⊆ Acc(S).
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Different argumentation semantics have been proposed to char-
acterize collectively acceptable sets of arguments, called exten-
sions [33, 24]. Every extension is an admissible set satisfying addi-
tional conditions. Specifically, the complete, preferred, stable, semi-
stable, and grounded extensions of an AF are defined as follows.

Given an AF 〈A,R〉, a set S ⊆ A is an extension called:

• complete (co) iff it is an admissible set and S = Acc(S);
• preferred (pr) iff it is a ⊆-maximal complete extension;
• stable (st) iff it is a total preferred extension, i.e. a preferred ex-

tension such that S ∪Def(S) = A;
• semi-stable (sst) iff it is a preferred extension such that S ∪
Def(S) is maximal (w.r.t. ⊆);

• grounded (gr) iff it is a ⊆-minimal complete extension.

The set of complete (resp. preferred, stable, semi-stable,
grounded) extensions of an AF Λ will be denoted by co(Λ) (resp.
pr(Λ), st(Λ), sst(Λ), gr(Λ)). It is well-known that the set of com-
plete extensions forms a complete semilattice w.r.t. ⊆, where gr(Λ)
is the meet element, whereas the greatest elements are the preferred
extensions. All the above-mentioned semantics except the stable ad-
mit at least one extension. The grounded semantics, that admits ex-
actly one extension, is said to be a unique status semantics, while the
others are said to be multiple status semantics. With a little abuse of
notation, in the following we also use gr(Λ) to denote the grounded
extension. For any AF Λ the following inclusion relations hold: i)
st(Λ) ⊆ sst(Λ) ⊆ pr(Λ) ⊆ co(Λ), ii) gr(Λ) ∈ co(Λ), and iii)
st(Λ) 6= ∅ implies that st(Λ) = sst(Λ). Arguments occurring in
an extension are said to be accepted, whereas arguments attacked by
accepted arguments are said to be rejected; the remaining arguments
are said to be undecided (w.r.t. the considered extension).

2.2.1 Labelling

The argumentation semantics can be also defined in terms of la-
belling [10]. A labelling for an AF 〈A,R〉 is a total function L : A→
{in,out,und} assigning to each argument a label: L(a) = in
means that a is accepted, L(a) = out means that a is rejected,
and L(a) = und means that a is undecided.

Let in(L) = {a | a ∈ A ∧ L(a) = in}, out(L) = {a | a ∈
A ∧ L(a) = out}, and und(L) = {a | a ∈ A ∧ L(a) = und}, a
labelling L can be represented by means of a triple 〈in(L),out(L),
und(L)〉. We also use the notation in(a) (resp. out(a), und(a))
to denote that a ∈ in(L) (resp. a ∈ out(L), a ∈ und(L)).

Given an AF Λ = 〈A,R〉, a labelling L for A is said to be admis-
sible (or legal) if ∀a ∈ in(L) ∪ out(L) it holds that:

(i) L(a) = out iff ∃ (b, a) ∈ R such that L(b) = in; and
(ii) L(a) = in iff ∀(b, a) ∈ R, L(b) = out holds.

Moreover, L is a complete labelling iff conditions (i) and (ii) hold for
all arguments a ∈ A.

Between complete extensions and complete labellings there is a
bijective mapping defined as follows: for each extension E there is
a unique labelling L(E) = 〈E,Def(E),A \ (E ∪ Def(E))〉 and
for each labelling L there is a unique extension, that is in(L). We
say that L(E) is the labelling corresponding to E. Moreover, we
say that L(E) is a σ-labelling for a given AF Λ and semantics σ ∈
{co, pr, st, sst, gr} iff E is a σ-extension of Λ.

In the following, we say that the status of an argument a w.r.t. a
labelling L (or its corresponding extension in(L)) is in (resp. out,
und) iff L(a) = in (resp. L(a) = out, L(a) = und). We will
avoid to mention explicitly the labelling (or the extension) whenever
it is understood.

ca b

Figure 2: AF Λ5 of Example 5.

Example 5. Let Λ5 = 〈A5,R5〉 be an AF where A5 = {a, b, c}
and R5 = {(a, b), (b, a), (b, c), (c, c)} whose graph is shown in
Figure 2. AF Λ5 has three complete extensions: E1 = ∅, E2 =
{a}, E3 = {b}, whose corresponding complete labellings are L1 =
〈∅, ∅, {a, b, c}〉, L2 = 〈{a}, {b}, {c}〉, and L3 = 〈{b}, {a, c}, ∅〉.
Also, the set of preferred extensions is {E2, E3}, whereas the set of
stable (and semi-stable) extensions is {E3}, and the grounded exten-
sion isE1. Correspondingly, the pr-labelling set is {L2,L3}, the st-
and sst-labelling set is {L3}, while the gr-labelling set is {L1}. 2

Three fundamental problems in AF are verification, existence and
non-empty existence. Given an AF Λ = 〈A,R〉, a set S ⊆ A of
arguments, and a semantics σ ∈ {gr, co, st, pr, sst}:

• the verification problem (denoted as Vσ) is the problem of de-
ciding whether S ∈ σ(Λ), that is, deciding whether S is a σ-
extension of Λ;

• the existence problem (denoted as EXσ) is the problem of deciding
whether σ(Λ) 6= ∅, that is, deciding whether there exists at least
one σ-extension of Λ;

• the non-empty existence problem (denoted as EX¬∅σ ) is the prob-
lem of deciding whether there exists S ∈ σ(Λ) s.t. S 6= ∅, i.e.
deciding whether there exists a non-empty σ-extension of Λ.

Clearly, for the grounded, complete, preferred and semi-stable se-
mantics, which always admit at least one extension, the existence
problem is trivial—this is not the case of deciding the non-empty ex-
istence problem. The complexity of (non-empty) existence and veri-
fication problems for AF has been thoroughly investigated (see [36]
for a survey). A summary of the results is given in Tables 1 and 2.

2.3 Incomplete ArgumentationFramework
We now recall the incomplete AF [14, 39].

Definition 1 (iAF). An incomplete AF (iAF) is a tuple 〈A,B,R,T〉,
where A and B are disjoint sets of arguments, and R and T are disjoint
sets of attacks between arguments in A ∪ B. Arguments in A and
attacks in R are said to be certain, while arguments in B and attacks
in T are said to be uncertain.

Certain arguments in A are definitely known to exist, while uncer-
tain arguments in B are not known for sure: they may occur or may
not. Analogously, certain attacks in R are definitely known to exist if
their incident arguments exist, while for uncertain attacks in T it is
not known for sure if they hold, even if the incident arguments exist.

An iAF 〈A,B,R,T〉 is said to be an arg-iAF iff T = ∅, i.e. it does
not contain uncertain attacks. We may omit the empty set T and use
a triple 〈A,B,R〉 to denote an arg-iAF.

An iAF compactly represents alternative AF scenarios, called
completions. A completion for an iAF ∆ = 〈A,B,R,T〉 is an AF
Λ = 〈A′,R′〉 such that A ⊆ A′ ⊆ A∪B and R∩ (A′×A′) ⊆ R′ ⊆
(R ∪ T) ∩ (A′ × A′).

Existence problems in iAF have been investigated in [57]. Given
an iAF ∆ and a semantics σ ∈ {gr, co, pr, st, sst},

1. the possible existence problem under σ, denoted as PEXσ , con-
sists in deciding whether there exists a completion Λ of ∆ that
has at least one σ-extension;
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Figure 3: Arg-iAF ∆7 of Example 7 (left), and its completions Λ′7 (center)
and Λ′′7 (right).

2. the possible non-empty existence problem under σ, denoted as
PEX¬∅σ , consists in deciding whether there exists a completion
Λ of ∆ that has a non-empty σ-extension;

3. the necessary existence problem under σ, denoted as NEXσ , con-
sists in deciding whether all completions Λ of ∆ have a σ-
extension;

4. the necessary non-empty existence problem under σ, denoted as
NEX¬∅σ , consists in deciding whether all completions Λ of ∆ have
a non-empty σ-extension.

As the completions of (any) iAF prescribe at least one σ-extension
for σ ∈ {gr, co, pr, sst}, PEXσ and NEXσ are trivial under σ [57].

Fact 1. For any iAF and semantics σ ∈ {gr, co, pr, sst}, PEXσ
and NEXσ are trivial.

However, under stable semantics, the existence of at least one ex-
tension for any completion is not guaranteed.

Example 6. Let ∆6 = 〈A5 \ {b}, {b},R5, ∅〉 be an iAF, where
〈A5,R5〉 is the AF of Example 5. The completion 〈A5,R5〉 has the
stable extension {b} (as observed in Example 5), while the comple-
tion 〈{a, c}, {(c, c)}〉 has no stable extension. 2

It is worth noting that, for any iAF, PEXst is NP-complete
and NEXst is Πp

2-complete. These results follow from Proposition
18 and Theorem 21 in [57] by observing that PEXst(∆) (resp.
NEXst(∆)) is true iff PEX¬∅st(∆) (resp. NEX¬∅st(∆)) is true. The
complexity of the existence problems for iAF is reported in Table 2.

The following verification problems for iAF have been investi-
gated in [14, 39]. Given an iAF ∆ = 〈A,B,R,T〉, a set of arguments
S ⊆ (A ∪ B), and a semantics σ ∈ {gr, co, pr, st, sst},

1. the possible verification problem under σ (denoted as PVσ) con-
sists in deciding whether there exists a completion Λ of ∆ such
that S is a σ-extension of Λ;

2. the necessary verification problem under σ (denoted as NVσ)
consists in deciding whether for all completions Λ of ∆ it holds
that S is a σ-extension of Λ.

Example 7. Consider the AF of Example 1 and assume that the par-
ticipation of Carl is uncertain. This can be modeled by the (arg-)iAF
∆7=〈{a, b, d}, {c}, {(a, b), (b, c), (c, d), (d, c)}, ∅〉 whose graph
is shown in Figure 3 (left), where the uncertain argument is repre-
sented by a dotted circle. ∆7 has 2 completions: Λ′7= 〈{a, b, c, d},
{(a, b), (b, c), (c, d), (d, c)}〉 and Λ′′7 = 〈{a, b, d}, {(a, b)}〉, also
shown in Figure 3. Under semantics σ ∈ {st, pr, sst}, AF Λ′7 has
two extensions, E1={a, d} and E2={a, c}, while AF Λ′′7 has only
one extension, that is E1. Thus, given iAF ∆7 and either E1 or E2

we have that PVσ is true, while NVσ is true for E1 only. That is, E1

and E2 are possible extensions, but only E1 is a necessary one. 2

The complexity of PVσ and NVσ for iAF has been investigated
in [14] for semantics σ ∈ {gr, co, st, pr} and in [3] for the semi-
stable semantics. The complexity results are summarized in Table 1.

2.4 Epistemic Argumentation Framework

In this section, we review the Epistemic Argumentation Frame-
work [55], which extends Dungs’ framework with epistemic con-
straints.

Given an AF Λ = 〈A,R〉, an epistemic atom over Λ is of the form
Kϕ or Mϕ, where K and M are called modal operators, and ϕ is
a propositional formula built from λA = {in(a),out(a),und(a) |
a ∈ A} by using the connectives ¬, ∨, and ∧. Moreover, an epis-
temic literal is an epistemic atom or its negation. An epistemic for-
mula (over λA) is a propositional formula constructed over epistemic
literals and connectives ∧ and ∨. Epistemic formulae introduce sub-
jective knowledge of agents, whereas the AF encodes the objective
knowledge. Intuitively, Kϕ (resp. Mϕ) means that the considered
agent believes that ϕ is certainly true (resp. ϕ is possibly true).1

The satisfaction of a propositional formula ϕ over λA w.r.t. a la-
belling L (denoted as L(S) |= ϕ) holds if the formula obtained from
ϕ by replacing every atom occurring in L(S) with t (true), and
every atom not occurring in L(S) with f (false), evaluates to true.

A set LS of labellings satisfies an epistemic formula ϕ, denoted as
LS |= ϕ, if one of the following conditions holds:
• ϕ = t,
• ϕ = Kψ and L |= ψ for every L ∈ LS ,
• ϕ = Mψ and L |= ψ for some L ∈ LS ,
• ϕ = ¬ψ and LS 6|= ψ,
• ϕ = ϕ1 ∧ ϕ2 and (LS |= ϕ1 and LS |= ϕ2),
• ϕ = ϕ1 ∨ ϕ2 and (LS |= ϕ1 or LS |= ϕ2).

An epistemic formula ϕ is consistent if there exists a (non-empty)
set LS of labellings such that LS |= ϕ; otherwise, ϕ is inconsistent.
The following basic properties hold:
• LS |= ¬Mϕ iff LS |= K¬ϕ,
• LS |= ¬Kϕ iff LS |= M¬ϕ,
• LS |= M(ϕ1 ∨ ϕ2) iff LS |= Mϕ1 or LS |= Mϕ2,
• LS |= K(ϕ1 ∧ ϕ2) iff LS |= Kϕ1 and LS |= Kϕ2.

Definition 2 (EAF). An Epistemic AF (EAF) is a triple 〈A,R, ϕ〉
where 〈A,R〉 is an AF and ϕ is an epistemic formula to be satisfied,
also called epistemic constraint.

Let ∆ = 〈A,R, ϕ〉 be an EAF and σ ∈ {gr, co, pr, st, sst} be
a semantics. A set LS of labellings is a σ-epistemic labelling set of
∆ if (i) each L ∈ LS is a σ-labelling of 〈A,R〉, and (ii) LS is a
⊆-maximal set of σ-labellings of 〈A,R〉 that satisfies ϕ.

As discussed in Section 1, an EAF may have multiple σ-epistemic
labelling sets. In fact, a σ-epistemic labelling set is a collection of
σ-labellings that represent the belief of an agent. In particular, EAF
∆ = 〈A,R, t〉 has a unique σ-epistemic labelling set that coincides
with the set of σ-labellings of the underlying AF 〈A,R〉. By defi-
nition, an EAF always has a σ-epistemic labelling set (possibly an
empty set). For instance, the EAF 〈A,R, f〉 has the σ-epistemic la-
belling set ∅.

Example 8. Consider the EAF ∆3 = 〈A3,R3,Kin(a)∨Kin(d)〉,
whose preferred (stable and semi-stable)-epistemic labelling sets
are given in Example 3. We have that the only grounded epis-
temic labelling set for ∆3 is ∅, as the grounded labelling L =
{und(a),und(b),und(c),und(d)} of the underlying AF Λ3 =
〈A1,R1 ∪ {(b, a)}〉 does not satisfy the epistemic constraint, that is,
L 6|= (Kin(a) ∨Kin(d)). 2

1 We use K (‘Known’) and M (‘May hold’) to follow the original EAF no-
tation which is based on that of epistemic logic programs, that in turn is
borrowed from modal logic.
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In the following, we assume that epistemic constraints are of form
ϕ = ϕ1∨· · ·∨ϕn, where ϕi = Kϕi,0∧· · ·∧Kϕi,ki ∧Mϕi,ki+1 ∧
· · ·∧Mϕi,mi and eachϕi,j (with i ∈ [1..n], j ∈ [0..mi]) is a general
propositional formula.

3 Verification Problems in EAF
We first introduce the possible and necessary verification problems
for EAF, and then investigate their complexity.

Definition 3 (Possible/Necessary Verification). Given an EAF ∆, a
semantics σ ∈ {gr, co, st, pr, sst}, and a labelling L,

1. the possible verification problem under σ (denoted as PVσ) con-
sists in deciding whether there is a σ-epistemic labelling set LS
of ∆ such that L ∈ LS ;

2. the necessary verification problems under σ (denoted as NVσ)
consists in deciding whether for all σ-epistemic labelling sets LS
of ∆ it holds that L ∈ LS .

Given a pair (∆,L), we use PVσ(∆,L) (resp. NVσ(∆,L)) to
denote the output of problem PVσ (resp. NVσ) over such instance.

Example 9. Let ∆3 = 〈A3,R3,Kin(a) ∨Kin(d)〉 be the EAF of
Example 3. Recall that ∆3 has two σ-epistemic labelling sets (under
semantics σ ∈ {pr, st, sst}): {L1,L2} and {L2,L3}. Then L1,
L2, and L3 are possible σ-labellings of ∆3, while only L2 is a nec-
essary σ-labelling of ∆3. That is, PVσ is true for L1, L2, and L3,
while NVσ is true for L2 only. 2

The following theorems characterize the complexity of the possi-
ble and necessary verification problems for EAF.

Theorem 1. For any EAF, PVσ is:

– in P for σ = gr;
– NP-complete for σ ∈ {co, st};
– Σp2-complete for σ ∈ {pr, sst}.

Proof hint. The hardness results for complete and stable semantics
can be shown by providing a reduction from the non-empty exis-
tence problem for AF. In fact, there exists a non-empty complete
(resp. stable) extension in an AF 〈A,R〉 iff L = {in(α),out(β)} ∪
{out(x) | x ∈ A} belongs to at least one σ-epistemic labelling set
for the EAF 〈A′ = A ∪ {α, β},R′ = R ∪ {(a, α), (α, a), (α, β) |
a ∈ A}, ϕ = M

(
in(β)

)
〉. For the preferred and semi-stable se-

mantics, we can show that any AF Λ = 〈A,R〉 is not coher-
ent [34] iff {in(α),out(β),und(γ), } ∪ {out(a) | a ∈ A}
belongs to at least one σ-epistemic labelling set for the EAF
〈A′ = A ∪ {α, β, γ},R′ = R ∪ {(a, α), (α, a) | a ∈ A} ∪
{(α, β), (β, γ), (γ, γ)}, M

(∨
a∈A und(a)

)
〉. PVgr is in P since it

suffices to check that the input labelling L is the grounded labelling
of the underlying AF and that {L} |= ϕ (in P, cf. Proposition 2). 2

Theorem 2. For any EAF, NVσ is:

– in P for σ = gr;
– coNP-complete for σ ∈ {co, st};
– Πp

2-complete for σ ∈ {pr, sst}.

As shown in Table 1, the complexity of the verification problems
for EAF increases of one level in the polynomial hierarchy w.r.t. that
for AF. Moreover, while the complexity of the possible verification
problem is the same as that for the corresponding problem for iAF,
the complexity of the necessary verification problem for EAF in-
creases of one level in the polynomial hierarchy w.r.t. that for iAF
(that coincides with that for AF).

AF iAF EAF
σ Vσ PVσ NVσ PVσ NVσ

co P NP-c P NP-c coNP-c
st P NP-c P NP-c coNP-c
pr coNP-c Σp2-c coNP-c Σp2-c Πp2-c
sst coNP-c Σp2-c coNP-c Σp2-c Πp2-c

Table 1: Complexity of the verification problems for AF, iAF and EAF under
semantics σ ∈ {co, st, pr, sst}. For any complexity class C, C-c means
C-complete. New results are highlighted in grey.

4 Existence Problems in EAF
The existence of solutions in EAF corresponds to determine the ex-
istence of σ-epistemic labelling sets. As there could be several σ-
epistemic labelling sets, we consider two problems, namely possi-
ble existence and necessary existence, respectively checking whether
i) there exists a not empty σ-epistemic labelling set, and ii) all σ-
epistemic labelling sets are not empty. Moreover, for each problem,
we also consider the non-empty labelling variant, namely possible
non-empty existence and necessary non-empty existence, respectively
checking whether i) there exists a not empty σ-epistemic labelling
set containing a non-empty σ-labelling, and ii) all σ-epistemic la-
belling sets contain a non-empty σ-labelling. Herein, for an empty
labelling we mean a labelling where all arguments are labelled as
undecided. Observe that if a labelling prescribes that an argument a
is not labelled as undecided, then it must also prescribe that there
is an argument b (not necessarily distinct from a) which is labelled
in. Therefore, we say that a labelling L is empty iff und(L) is the
whole set of arguments, which in turn means that in(L) is empty.

Definition 4 (Possible/Necessary Existence). Let ∆ = 〈A,R, ϕ〉 be
an EAF and σ ∈ {gr, co, st, pr, sst} a semantics,

1. the possible existence problem, denoted as PEXσ , consists in de-
ciding whether there exists a σ-epistemic labelling set LS for ∆
such that LS 6= ∅;

2. the possible non-empty existence problem, denoted as PEX¬∅σ ,
consists in deciding whether there exists a σ-epistemic labelling
set for ∆ having at least one σ-labelling L such that in(L) 6= ∅;

3. the necessary existence problem, denoted as NEXσ , consists in
deciding whether for all σ-epistemic labelling set LS for ∆ it
holds that LS 6= ∅;

4. the necessary non-empty existence problem, denoted as NEX¬∅σ ,
consists in deciding whether all σ-epistemic labelling sets for ∆
have at least one σ-labelling L such that in(L) 6= ∅.

Given an EAF ∆, we use PEXσ(∆) (resp. PEX¬∅(∆),
NEXσ(∆), NEX¬∅(∆)) to denote the output of problem PEXσ
(resp. PEX¬∅, NEXσ , NEX¬∅) over such instance.

In the rest of this section, we investigate the complexity of the exis-
tence problems in EAF. We start by presenting some results that will
be useful to characterize the complexity of the considered problems.

We first observe that possible and necessary existence in EAF co-
incide. Intuitively, this is due to the fact, by definition, σ-epistemic la-
belling sets enjoy a ⊆-maximal property entailing that none of them
can be contained in a non-empty σ-epistemic labelling set, if it exists.

Proposition 1. For any EAF ∆ and semantics σ ∈ {gr, co, st,
pr, sst}, PEXσ(∆) = NEXσ(∆).

Proof. Clearly, if NEXσ(∆) is true then PEXσ(∆) is true. If
PEXσ(∆) is true, and thus there is a σ-epistemic labelling set LS for
∆ such that LS 6= ∅, then every σ-epistemic labelling set for ∆ is
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AF iAF EAF
σ EXσ EX¬∅σ PEXσ NEXσ PEX¬∅σ NEX¬∅σ PEXσ /NEXσ PEX¬∅σ NEX¬∅σ
co T NP-c T T NP-c Πp2-c NP-c NP-c NP-c
st NP-c NP-c NP-c Πp2-c NP-c Πp2-c NP-c NP-c NP-c
pr T NP-c T T NP-c Πp2-c Σp2-c Σp2-c Σp2-c
sst T NP-c T T NP-c Πp2-c Σp2-c Σp2-c Σp2-c

Table 2: Complexity of the verification and existence problems for AF, iAF and EAF under complete (co), stable (st), preferred (pr), and semi-stable (sst)
semantics. For any complexity class C, C-c means C-complete. T stands for trivial. New results are highlighted in grey.

not empty, otherwise it would not be a⊆-maximal set of σ-labellings
of the underlying AF that satisfies the epistemic constraint.

Proposition 2. Checking whether a given labelling set satisfies a
given epistemic formula is decidable in polynomial time.

Proof. Let A be a set of arguments,LS a set of labellings over A, and
ϕ = ϕ1∨· · ·∨ϕn an epistemic formula, where ϕi = Kϕi,0∧· · ·∧
Kϕi,ki∧Mϕi,ki+1∧· · ·∧Mϕi,mi . We need to check whether there
is i ∈ [1, n], s.t. LS |= ϕi. This can be done in P as it is sufficient to
check that a) for each j ∈ [ki+1,mi] there is L ∈ LS that satisfies
ϕi,j and b) all L ∈ LS satisfy the formulae ϕi,l with l ∈ [0, ki].

As stated next, the grounded-epistemic labelling set is unique.

Fact 2. For any EAF 〈A,R, ϕ〉, the gr-epistemic labelling set is
{L(gr(〈A,R〉))} if L(gr(〈A,R〉))|= ϕ; ∅ otherwise.

Although the presence of constraints in EAF breaks the meet-
semilattice of complete extensions, reasoning under the grounded
semantics remains tractable.

Proposition 3. Checking whether an EAF admits a non-empty
grounded-epistemic labelling set can be done in polynomial time.

Proof. Let ∆ = 〈A,R, ϕ〉 be an EAF. A labelling set LS = {L} of
∆ is the grounded-epistemic of ∆ iff in(L) is the grounded exten-
sion of 〈A,R〉 and LS |= ϕ. Computing the grounded labelling L is
in P [33]. Checking whether LS satisfies a given epistemic constraint
ϕ is also in P, from which the statement follows.

Therefore, since if a grounded-epistemic labelling set for an EAF
exists then it is unique, deciding the possible existence problem in
EAF under the grounded semantics is still polynomial. This is stated
in the next theorem which also states the complexity of possible ex-
istence under the multiple status semantics σ ∈ {co, pr, st, sst}.
Clearly, the following results also hold for NEXσ (cf. Proposition 1).

Theorem 3. For any EAF, PEXσ is:

– in P for σ = gr;
– NP-complete for σ ∈ {co, st};
– Σp2-complete for σ ∈ {pr, sst}.

The following theorems characterize the complexity of the possi-
ble and necessary non-empty existence problems for EAF.

Theorem 4. For any EAF, PEX¬∅σ is:

– in P for σ = gr;
– NP-complete for σ ∈ {co, st};
– Σp2-complete for σ ∈ {pr, sst}.

Theorem 5. For any EAF, NEX¬∅σ is:

– in P for σ = gr;
– NP-complete for σ ∈ {co, st};
– Σp2-complete for σ ∈ {pr, sst}.

The results of this section show that deciding the possible or neces-
sary existence problem in EAF is harder than in iAF (and AF), except
for stable semantics for which deciding existence in EAF behaves as
in AF. Moreover, it turns out that non-emptiness is not a source of
complexity in EAF (i.e. deciding non-empty existence is not harder
than deciding existence), while for iAF deciding non-empty exis-
tence is generally harder than deciding existence (except for stable
semantics where the existence of a solution is not guaranteed in AF).

5 Relationship between EAF and iAF
In this section, we analyze the relationship between EAF and iAF.
We focus on multiple status semantics only, avoiding considering the
grounded semantics that behaves differently in the two frameworks.
Indeed, differently from EAF where the grounded semantics remains
unique status as in AF, for iAF the grounded semantics prescribes
multiple extensions (one for each completion). Thus comparing EAF
and iAF under grounded semantics would mean comparing a deter-
ministic semantics with a non-deterministic one, that, in our opinion,
does not fit well with our current setting where semantics prescribing
multiple solutions are meant to represent uncertain information.

The following proposition states that EAF can be used to decide
possible and necessary verification over iAF. Although the result is
given for a special class of iAF (i.e. arg-iAF), we recall that arg-iAF
is as expressive as (general) iAF [3, 14, 13].

Let ∆ = 〈A,B,R〉 be an arg-iAF. We use eaf(∆) = 〈A∗,R∗, ϕ〉
to denote the EAF obtained from ∆ as follows:

• A∗ = A ∪ B ∪ {xb, xb | b ∈ B};
• R∗ = R ∪ {(xb, xb), (xb, xb), (xb, b) | b ∈ B}; and

• ϕ = K
(∧

b∈B
(
¬und(xb)

))
.

Theorem 6. Let ∆ = 〈A,B,R〉 be an iAF, S ⊆ A∪ B a set of argu-
ments, σ ∈ {co, pr, st, sst} a semantics. For any completion Λ =
〈AΛ,RΛ〉 of ∆, it holds that S ∈ σ(Λ) iffL(S)∪{out(xb), in(xb) |
b ∈ B ∩ AΛ} ∪ {in(xb),out(xb),out(b) | b ∈ B \ AΛ} is a σ-
labelling for eaf(∆).

Proof. (⇒) If S ∈ σ(Λ) then L(S) ∪ {out(xb), in(xb) | b ∈
B∩AΛ}∪{in(xb),out(xb),out(b) | b ∈ B \AΛ} is a σ-labelling
for ∆∗ = eaf(∆) as L(S) |= ϕ. (⇐) There is a σ-labelling L(S′)
for ∆∗ containing the label in(a) s.t. a ∈ S. Then, let Λ = 〈AΛ =
(A ∪ {b ∈ B | in(xb) ∈ L(S′)}), RΛ = (R ∩ (AΛ × AΛ))〉 be a
completion of ∆, it holds that S ∈ σ(Λ).

Example 10. Consider the iAF ∆7 of Example 7 and the
corresponding EAF ∆10 = eaf(∆7) = 〈{a, b, c, d, xc, xc},
{(a, b), (b, c), (c, d), (d, c), (xc, xc), (xc, xc), (xc, c)}, ϕ =
K¬und(xc)〉, whose underlying AF is shown in Figure 4.
For σ ∈ {st, pr, sst}, ∆10 has the σ-epistemic labelling
set {L′1 = {in(a),out(b),out(c), in(d),out(xc), in(xc)},
L′2 = {in(a),out(b), in(c),out(d),out(xc), in(xc)}, L′′1 =
{in(a),out(b),out(c), in(d), in(xc),out(xc)}, whose labellings
correspond (modulo arguments xc and xc) to σ-labellings of ∆7. 2
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a b

d c xc xc

Figure 4: AF underlying EAF ∆10, corresponding to iAF of Example 7.

From the result of Theorem 6 we have that EAF can encode iAF
possible/necessary verification. In fact, according to the results of
Section 3, verification in EAF is more expressive than in iAF for
each considered semantics (cf. Table 2).

6 Related Work

Work on epistemic logic dates back to the early 1860s. Since then
epistemic logic has played an important role also in computer sci-
ence. This field is very active and important results are reported in a
recent book surveying state-of-the-art research [58]. Epistemic Logic
extends propositional logic by allowing to also express knowledge of
agents, also called subjective knowledge. The idea of extending logic
with epistemic constructs has been investigated also in the field of
Answer Set Programming (ASP) [42, 38]. Epistemic logic programs,
firstly proposed in [42], extend disjunctive logic programs under the
stable model semantics with modal constructs called subjective lit-
erals [43, 22, 23, 38]. In such a context, several problems are still
open and they regard the support required by stable models, as well
as splitting properties that are satisfied by classical ASP semantics,
but not satisfied by epistemic ASP-based semantics [56, 23, 46].

Constraints have been also used in the context of dynamic AFs to
refer to the enforcement of some change [32]. In this context, exten-
sion enforcement aims at modifying an AF to ensure that a given set
of arguments becomes (part of) an extension for the chosen seman-
tics [12, 11, 60, 52]. This is different from the EAF approach [55]
where epistemic constraints are used to discard unfeasible solutions
(i.e. labellings/extensions), without enforcing that a new set of argu-
ments becomes an extension.

As also discussed in [55], a difference between Constrained
AF [29] and EAF concerns the meaning of constraints. Indeed, con-
straints in CAF are imposed on the admissibility of sets of argu-
ments (i.e. over admissible sets) that are at the basis of σ-extensions,
with σ ∈ {gr, co, pr, st, sst}. As a consequence, a drawback
of this approach is that σ-extensions of CAF are no longer guar-
anteed to be σ-extensions of the underlying AF, that is, we may
have E ∈ σ(〈A,R,C〉) \ σ(〈A,R〉). Differently, EAF prescribe σ-
labellings that are σ-labellings of underlying AF.

AF with epistemic attacks (EAAF) has been recently introduced
in [4], where new types of epistemic AF attacks are considered.
While in EAF the labelings of the underlying AF satisfying con-
straints are grouped into (multiple) epistemic labeling sets, EAAF
extends AF by considering three kinds of attacks (classical, weak
epistemic, and strong epistemic) and extends the concepts of defeated
and acceptable argument. The two frameworks are significantly dif-
ferent, as confirmed by the different complexity results obtained.

The relationship between epistemic constraints and preferences
has been explored in [55], where it is shown that EAF enables us
to specify a kind of preferences over not only arguments but also jus-
tification states of arguments. Dung’s framework has been extended
in several ways for allowing preferences over arguments [6, 50]. In
particular, preferences relying to so-called critical attacks, i.e. at-
tacks from a less preferred argument to a more preferred one, can
be handled by removing or invalidating such attacks or by “invert-
ing” them [8]. Such kind of preferences can be encoded into EAF,

possible through reductions relying on additional arguments and at-
tacks [47].

Preferences can be also expressed in value-based AFs [15], where
each argument is associated with a numeric value, and a set of
possible orders (preferences) among the values is defined. In [35]
weights are associated with attacks, and new semantics extending
the classical ones on the basis of a given numerical threshold are
proposed. [30] extends [35] by considering other aggregation func-
tions over weights apart from sum. Except for weighted solutions
under grounded semantics (that prescribes more than one weighted
solution), the complexity of the main reasoning tasks in the above-
considered AF-based frameworks is lower than that of EAFs, which
suggests that EAFs are more expressive and can be used to model
those frameworks (we plan to formally investigate these connections
in future work).

7 Conclusions and Future Work
We have investigated the complexity of the existence and verifica-
tion problems in EAF, where epistemic constraints are expressed by
using modal operators. It turns out that verification in iAF can be re-
duced to verification in EAF, providing a connection between these
two AF-based frameworks. It is worth noting that the connection be-
tween AF, iAF and EAF carry over to other AF-based frameworks
that can be mapped to AF, such as Bipolar AF [26] and AF with re-
cursive attacks and supports [27], among others [59, 45, 1]. However,
despite the relationship concerning verification, our complexity anal-
ysis also shows that possible and necessary (non-empty) existence
behave quite differently for iAF and EAF—this is intuitively due
to the different semantics of the two frameworks. For instance, un-
der standard complexity assumption, for some semantics, necessary
non-empty existence in iAF cannot be reduced to the corresponding
problem in EAF, while possible existence in EAF cannot be reduced
to the corresponding problem in iAF.

As in the case of other AF-based frameworks, the complexity of
the verification and existence problems are preparatory for the in-
vestigation of that of the credulous and skeptical acceptance prob-
lems, as e.g. membership algorithms for the verification problem can
be used or adapted to solve these problems—we plan to investigate
the complexity of EAF acceptability problems in future work. Ad-
ditional future work will be devoted to considering more general
forms of epistemic constraints, such as epistemic constraints allow-
ing to express conditions on aggregates (e.g. the agent believe that at
least n arguments from a given set S should be accepted/rejected).
Moreover, we plan to explore epistemic constraints in structured ar-
gumentation formalisms [20, 41]. Finally, concerning possible im-
plementations, it is worth noting that SAT-based CEGAR algorithms
have been successfully used for solving various Σp2-complete prob-
lems, including e.g. stable conclusions in ASPIC+ [49] and accep-
tance in iAF [13]. This suggests that, following that approach, EAF
existence and verification problems could be addressed in a similar
way. Alternatively, considering the tight relationship between AF and
Answer Set Programming (ASP) (see [37]), EAF existence and ver-
ification problems could be solved by mapping EAF into Epistemic
ASP (EASP) and using current EASP solvers [48, 16].
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