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Abstract—A major challenge in active learning is to select the
most informative instances to be labeled by an annotation oracle
at each step. In this respect, one effective paradigm is to learn
the active learning strategy that best suits the performance of
a meta-learning model. This strategy first measures the quality
of the instances selected in the previous steps and then trains
a machine learning model that is used to predict the quality of
instances to be labeled in the current step.

In this paper, we propose a new approach of learning-to-
active-learn that selects the instances to be labeled as the ones
producing the maximum change to the current classifier. Our
key idea is to select such instances according to their importance
reflecting variations in the learning gradient of the classification
model. Our approach can be instantiated with any classifier
trainable via gradient descent optimization, and here we provide
a formulation based on a deep neural network model, which has
not deeply been investigated in existing learning-to-active-learn
approaches. The experimental validation of our approach has
shown promising results in scenarios characterized by relatively
few initially labeled instances.

I. INTRODUCTION

Supervised machine learning methods typically require a
number of training data instances that is as much large as
possible. However, manually labeling training instances is a
costly and time consuming process, especially for specialized
domains, where a deep expertise is required for correctly
associating data instances with labels. Active Learning aims
at selecting the data instances to be labeled by an expert,
or annotation oracle, in order to train a machine learning
model as quickly and effectively as possible. Several strate-
gies have been proposed in the literature [1], which select
the instances to be provided to the oracle for annotation
using different heuristics; however, none of such heuristics
has shown to outperform the others in every scenario of
interest. To overcome major limitations, meta-active learning
approaches have been proposed to automatically detect the best
strategy of selection of the instances to be annotated [2], [3],
[4]. Indeed, meta-learning approaches are gaining interest in
several fields, for instance to coordinate the learning process
in a master-slave distributed system [5] or to create algorithms
for gradient descent, global black-box optimization [6], [7], or
as a regression problem [8].

In this paper, we propose a new instance selection approach,
modeled as a regression problem, that exploits the training
gradient of a deep neural network model, and in general of any
machine learning model whose training phase is based on the

gradient descent algorithm. Before stating our contributions,
we discuss some related work on active learning.

Related work. Active learning methods typically fall into one
of the following categories: Uncertainty Sampling, Query-By-
Committee, Expected Model Change, Expected Error Reduc-
tion, Variance Reduction, and Density-Weighted [1].

Uncertainty sampling aims to improve the quality of the
labeled dataset by selecting as instances to be labeled those
such that the trained classifier is most uncertain in assigning a
class label [9], [10]. Among the uncertainty sampling methods,
least confidence sampling (LCS) is very popular for statistical
sequence models in information extraction tasks [11], [12].
LCS uses as uncertainty measure for an instance the difference
between 100% confidence and the most confidently predicted
label for the instance. Other approaches use different multi-
class uncertainty sampling variants, such as margin sam-
pling [13] or entropy [12].

Originally defined in [14] and theoretically analyzed in [15],
the query-by-committee approach maintains a set of prediction
models, or committee, that are used to predict the label of
an instance. The instance over which there is the maximum
disagreement on the labels predicted by the models in the
committee is regarded as the most informative and hence
selected for labeling. Several specializations of the approach
have been proposed using different models for the committee
members [16], [17], [18], [19].

The expected model change framework was first introduced
in [20], where the goal is to define a strategy for selecting the
instance that would yield the greatest change to the current
model if we knew its label. The strategy computes the expected
gradient length and uses it as a measure of the expected change
to the model that is associated to the labeling of an instance.
The key idea is to prefer instances that are likely to have
the greatest influence in changing the model. The framework
has shown to work well in practice, and theoretical aspects
have been well studied for support vector machines and linear
regression [21], although it can be computationally expensive
for large feature space and set of labelings.

Expected error reduction aims to select the instance x that
yields the maximum reduction of the model generalization
error once it is trained using the label of x too. However,
since the labels of some instances are not known, the model
is usually approximated using the expectation over all possible
labels under the current model. This framework has been



successfully used with a variety of models such as Naıve
Bayes [22], logistic regression [23], and SVM [24].

Variance reduction methods reduce the generalization error
indirectly by minimizing output variance. The early method
in [25] was proposed for active learning based on the reduc-
tion of the estimated distribution of the model’s output for
regression. Applications of variance reduction include multi-
class image classification [26].

The key idea of density-weighted methods is that infor-
mative instances should not only be the uncertain ones, but
also those representative of the underlying distribution [16],
[27], [28], [12], [29]. Hence, the instances to label are selected
according to a combination of a base selection measure (e.g.,
LCS) and a density based measure (i.e., the average similarity
of an instance w.r.t. the other instances).

Meta-learning algorithms have recently been proposed for
the active learning tasks. In [2], several active learning
heuristics are combined using a bandit algorithm exploiting
a maximum entropy criterion that estimates classification
performance without knowing the actual labels. This approach
has been improved in [3] with the use of a new unbiased
estimator of the test error. A Markov decision process is
used in [4] to provide a new meta-learning strategy for active
learning. Rather than combining existing heuristics, the meta-
learning approach to active learning in [8] models the active
learning task as a regression problem: given a trained classifier
and its output for a specific unlabeled instance, it predicts
the reduction in generalization error that can be expected
by providing the actual label of the instance. Note that the
regressor in [8] is required to be trained on a specific set of
instance-driven features, such as the variance of the classifier
output for the instance or the predicted probability distribution
over possible labels for the instance. Our approach does not
have the same constraint, since we utilize the raw features of
the instances, yet we can in principle exploit instance-driven
features. More importantly, for each active learning epoch,
[8] requires to perform several training steps of the classifier
while we perform just a single training step, which is suitably
modified so as to account for the importance of the features.

Main contributions. We propose a learning-to-active-learn
approach that originally incorporates a regression-based meta-
learning approach within a maximum model change frame-
work. Our main contributions can be summarized as follows:
• Starting from a classification model trained on a small

set of instances, we define an iterative active learning scheme
that, in order to decide the bunch of instances to be labeled
by an annotation oracle, it predicts which instances will yield
the maximum change to the current classifier.
• We define a meta-learning process upon two key in-

gredients: a notion of the importance of unlabeled instances
(from the pool of active learning choices) that expresses the
contribution that each instance provides to the learning of the
classifier; and a regression model to be trained on pairs of
labeled instances with associated importance scores.
• We design our approach to profitably exploit the learning

capabilities of (Deep) Neural Network models trained on
a classification task. Nonetheless, the proposed learning-to-
active-learn approach is actually versatile w.r.t. the supervised
learning model, as long as the gradient descent is used as the
training optimization method.
• While taking advantage of a deep neural network model,

we also face a challenge related to how to score the importance
of instances to drive the active learning process. Therefore, we
investigate different strategies of instance importance scoring
by considering variations in the learning gradient of the neural
network model. In this regard, our key idea is to account for
the similarity of direction of two gradients, the one unbiased
and the other one biased w.r.t. a candidate instance for labeling
at each step of the active learning process.
• Our experimental evaluation conducted on CIFAR-10

image data, and including a comparison with random and
LCS baselines, has shown promising results by the proposed
approach in terms of percentage increase in accuracy, due to
the active learning process driven by the proposed instance
importance scoring strategies, which tends to improve as the
number of initially available labeled instances gets smaller.

II. PROPOSED APPROACH

A classification problem consists in associating every in-
stance taken from a predefined domain D with a label taken
from a fixed universe of labels L. We assume the presence of
a set of instance-label pairs LI ⊆ D×L and a set of unlabeled
instances UI ⊆ D, where for each pair 〈x, y〉 ∈LI , x is an
instance in D and y is the label associated with x.

Our proposed approach is comprised of two phases: initial-
ization and an iterative phase. In the initialization phase, a
neural network is trained with the labeled instances in LI . An
initial set of unlabeled instances is randomly selected from UI
and these instances are submitted to the oracle to be labeled,
thus obtaining a new set of labeled instances, denoted as NLI .
In the iterative phase, several pool-based active learning steps
are performed. In each step, the set NLI of newly labeled
instances is used to train the classifier together with the set LI .
When retraining the classifier, the importance of every instance
x in NLI during the training is measured so as to assign an
importance score to x. Next, a regressor is trained using the
instances in NLI that aim to predict the importance scores.
Finally, the top-k instances having the greatest importance
score are selected for oracle labeling and, once labeled, they
replace the set NLI so to start the next active learning step.

The concept of importance score is at the core of our
approach. Following the model change framework [20], the
importance score of an instance x measures the impact of
having x in the training set for the obtained classifier. That
is, the importance score of a (labeled) instance x w.r.t. a set
of labeled instances is a measure of the difference between
the parameters of the classifier θ trained over LI and the
parameters of the classifier θ̂ trained over LI ∪{〈x, y〉}, where
y is the label of x. Unfortunately, in the case of neural network
classifiers, for the most commonly used training algorithm,
such as the stochastic gradient, there is (almost) no difference



Algorithm 1: LAL-IGradV
Data: LI: set of labeled instances, UI: set of unlabeled

instances, DNN: deep neural network model, R:
importance score regressor, epch: maximum number
of epochs, k: number of relevant instances to select

1 Train DNN on LI
2 NLI ← Select k instances from UI uniformly at random
3 The oracle annotates the instances in NLI
4 for i = 1 . . . epch do
5 Train DNN on LI ∪ NLI and compute importance

score rx, for each x ∈ NLI
6 Train R on the set of pairs {〈x, rx〉 |x ∈NLI}
7 LI ← LI ∪ NLI
8 Apply R to UI instances to predict importance scores

(r̂x)
9 topK ← Select top-k instances from UI by importance

score r̂x
10 The oracle annotates the instances in topK
11 NLI ← topK

between the parameters of the classifier trained using LI and
the parameters of the classifier trained conditionally to the
presence/absence of a given instance, i.e., trained using LI
∪{〈x, y〉}. To overcome this issue, we define different notions
of importance score (cf. Section II-B). In the next section we
provide a detailed description of the proposed approach.

A. The LAL-IGradV algorithm

Algorithm 1 shows the general schema of the proposed
approach, named Learning to Active Learn by Instance
Importance based Gradient Variation (LAL-IGradV).

LAL-IGradV receives in input a (small) set of labeled
instances LI , a set of unlabeled instances UI , a deep neural
network model DNN, a regressor model R, the number epch
of active learning epochs, and the number k of unlabeled
instances to select for oracle labeling at each active learning
epoch. The algorithm first trains DNN using LI (line 1),
randomly selects k unlabeled instances from UI and asks
the oracle to label them, thus obtaining the initial set NLI
of oracle-labeled instances (lines 2- 3). Then, at each epoch
(lines 4-11), LAL-IGradV performs the following steps.
• The neural network model is trained using the labeled

instances in LI and NLI (line 5). During the training process,
every instance x ∈ NLI is associated with its importance
score rx. The computation of the importance scores of the
instance in NLI is performed using one of the techniques
described in Section II-B.
• A regressor R is trained on the set {(x, rx)|x ∈NLI}.

Note that the choice of the regressor model actually used in
this and the subsequent steps is orthogonal w.r.t. the proposed
approach; however, it is essential that the chosen regression
model must be trainable using a small set of labeled instances.
• NLS instances are added to LS (line 7).
• The regressor R is applied to the instances in UI so that,

given an instance x, it predicts its importance score r̂x (line 8).
• The algorithm selects the top-k instances from UI (topK)

having the highest predicted importance scores, and these

instances in topK are submitted to the oracle for labeling
(lines 9-10). Finally, NLI is replaced with topK (line 11).

B. Importance scoring strategies

Let f(xi, θ) be the output of a DNN model f characterized
by a vector of parameters θ for an input xi and let X =
{x1, . . . , xn} be a set of instances used for training f , where
each sample xi ∈ X is associated to a label yi.

The training of the DNN f over X requires solving

argmin
θ

(∑
xi∈X

(L(yi, f(xi, θ)) + reg(θ)

)
,

where L(yi, f(xi, θ)) is the loss of the model for instance xi
and reg(θ) is the regularization of the parameters. The training
of f is accomplished by iteratively updating the parameters θ,
through two steps: (i) computing the change in all weights
w.r.t. the change in error, i.e., the gradient, defined as

δ(X) =
∂

∂θ

∑
xi∈X

(L(yi, f(xi, θ)) + reg(θ)),

and (ii) updating θ using δ(X), i.e., θk+1 = θk − η × δ(X),
where η is the update step size.

We define four strategies to associate each instance in NLI
with its importance score during the training of the DNN
classifier. The goal shared by the various techniques is to
modify the training of the neural network model by accounting
for the importance of the instances in NLI involved in each
training step. Each of the proposed techniques makes use of
the gradient corresponding to the instances currently in LI
and NLI , i.e., δ(LI ∪NLI), hereinafter simply denoted as δ.
The four proposed techniques differ in the way the importance
of an instance x in NLI is calculated with respect to the
single epoch. We will use symbol δx to denote the value of
the gradient δ({x}), and δ¬x to denote the value of the gradient
δ(LI∪NLI\{x}). In the following, we describe our proposed
techniques for computing the importance scores.

Direct similarity (DS ) – given an instance x in NLI , this
strategy compares the learning gradient of the neural network
at the current epoch, δ, with the gradient calculated with
respect to x only, i.e., δx. The importance score of x at the
current epoch is defined as the cosine similarity between δ
and δx, i.e., rx = cos(δ, δx). The rationale of this strategy is
that an instance x ∈ NLI is likely to be more important for
the training of DNN at the current epoch if there is a small
difference between the directions of the gradients δ and δx, as
reflected by a high value of the cosine similarity between the
two gradients. That is, the more the learning behavior of the
neural network considering the whole training set is similar
to the one of the same neural network trained on x only, the
higher the importance of x is.

Ranked direct similarity (RDS ) – this strategy first applies
the DS technique, then the importance scores of the instances
in NLI computed by DS are ordered and divided into three
bins, which correspond to the top quartile of the importance
scores, the bottom quartile, and the union of the second and
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Fig. 1: Histograms of the k = 500 measurements of DS (left)
and LD (right) strategies at the first epoch of active learning

third quartiles. The instances falling into the top quartile will
be associated with score 1, the ones falling into the bottom
quartile with score 0, and the other instances with score 0.5.

Leave-one-out distance (LD ) – given an instance x in
NLI , this strategy compares δ with the gradient calculated
when leaving out x, i.e., δ¬x. The importance score of x
at the current epoch is defined as the complement of the
cosine similarity (i.e., cosine distance) between δ and δ¬x,
i.e., rx = 1 − cos(δ, δ¬x). The rationale of this strategy is
that an instance x ∈ NLI is likely to be more important for
the training of DNN at the current epoch if leaving it out
will lead to large differences between the learning behavior of
the neural network considering the whole training set and the
learning behavior of the same neural network trained without
x, i.e., a large change in the direction of the gradient δ¬x
w.r.t. the gradient δ, as reflected by a high value of the cosine
distance between the two gradients.

Ranked leave-one-out distance (RLD ) – analogously to
RDS w.r.t. DS , the RLD strategy adds the same discretization
step over the importance scores computed by LD .

Figure 1 shows the distributions of the importance scores
yielded by DS and LD at the first epoch of active learning.
As it can be observed, both distributions span over the full
regime of admissible values, despite the high dimensionality
of the gradient vectors being compared.

III. EXPERIMENTAL EVALUATION

Data. We used the well-known CIFAR-10 dataset [30],
which consists of 60000 instances representing 32x32 colour
images, labeled using 10 mutually exclusive classes, with 6000
images per class. The dataset is organized into 50000 instances
as the training set and 10000 instances as the test set. The
latter contains exactly 1000 randomly-selected images from
each class, while the training set is comprised of five training
batches, which contain 5000 images from each class.

We divided the training set into two parts, the one corre-
sponding to the set of labeled instances (LS), and the other
corresponding to the set of unlabeled instances (US).

Baseline methods. We compare the performance of our
methods with a Random baseline and the LCS method [12].
The Random baseline, hereinafter denoted as Rnd, simply
selects k instances to be annotated at each epoch uniformly
at random from the set of unlabeled instances. The LCS
method follows an uncertainty sampling approach, therefore
it estimates the uncertainty of a specific instance and exploits
it as criterion for the unlabeled instance selection. More

precisely, given an instance x and a classification model θ,
the uncertainty of x w.r.t. θ (φ(x)) is measured as φ(x) =
(1−Pθ(y∗|x))× m

m−1 , where Pθ(y∗|x) denotes the probability
that the model θ assigns to the label y∗ for the instance x, y∗

is the label for which θ yields the maximum probability on x
(i.e., y∗ = argmaxy Pθ(y|x)), and m is the cardinality of the
set of labels. Note that the uncertainty function ranges between
[0, 1], where 1 is the most uncertain score.

Settings and assessment criteria. In our experimental
evaluation, we used 6 Convolutional Neural Network (CNN)
2D layers, with 3 input channels, kernel size 3, stride size 3,
padding size 1, ReLU activation function. The CNN module
has on top a fully-connected network with an input layer of
size 4096, one hidden layer with input size 4096 and output
size 1024, another hidden layer with input size 1024 and
output size 512, an output layer of size 10 (i.e., number of
classes), and a dropout layers with probability 0.1.

In our LAL-IGradV algorithm, the DNN model was trained
using cross entropy as loss function and Adam optimizer (with
learning rate 1e-4 and weight decay 5e-4), a number of epochs
equal to 10 for both the initialization step of training (Line 1)
and the training steps in the main loop (Line 5). Also, the
maximum number of iterations of the algorithm, i.e., number
of epochs in the active learning process (epch) was set to
10. Unless otherwise specified, the number k of instances to
select from UI was set to 500; the size of LI , resp. UI ,
was experimentally varied. As the regressor (R), we used two
models: the Gradient Boosting Regressor, with least absolute
deviations (LAD) loss function and 200 estimators, for the
DS and LD strategies, and the Random Forest Classifier, with
maximum depth 5, for the RDS and RLD strategies.

To simulate the oracle for annotating the instances, we
resorted to the availability of class label information for the
CIFAR-10 data: whenever an instance was used in the UI set,
we masked its actual label during the learning process, and
we unveiled the label only if the instance was selected within
the topK set of instances to annotate.

To assess the performance of the methods, we considered
the accuracy of the classifier during the various training
batches, in absolute terms as well as in terms of percentage
increase w.r.t. the early accuracy of the classifier itself or the
accuracy of a reference method. More precisely, we computed:
the accuracy at the initial step of training of LAL-IGradV
(line 1), denoted as A(0), and the accuracy at the end of
the active learning process, denoted as A; the percentage
increase in the accuracy of LAL-IGradV, which is defined as
100(A−A(0))/A(0); the percentage increase in the accuracy
of LAL-IGradV w.r.t. Rnd, resp. LCS, which is defined as
%Rnd = 100(A − ARnd)/ARnd, resp. %LCS = 100(A −
ALCS)/ALCS, where ARnd and ALCS denote the accuracy at
the end of the active learning process for Rnd and LCS.

Results. Table I reports on the performance of our LAL-
IGradV variants corresponding to the four importance scoring
techniques, for varying percentages of the set of unlabeled
instances (UI); for example, row ‘10%’ indicates that 10% of



TABLE I: Performance of our proposed methods: initial and final accuracy, percentage increase w.r.t. Rnd and w.r.t. LCS, and
active learning time (sec) averaged over the epochs, for various percentage values of unlabeled instances

A(0) DS RDS LD RLD
A %Rnd %LCS time A %Rnd %LCS time A %Rnd %LCS time A %Rnd %LCS time

10% 0.793 0.831 2.32 0.43 186 0.832 2.44 0.54 191 0.831 2.28 0.39 625 0.828 1.90 0.01 769
20% 0.783 0.826 1.90 0.75 178 0.825 1.79 0.65 217 0.824 1.72 0.57 623 0.822 1.46 0.32 796
30% 0.784 0.827 1.95 0.50 170 0.828 2.06 0.61 250 0.826 1.75 0.30 620 0.822 1.46 0.32 827
40% 0.763 0.819 4.01 1.08 170 0.811 3.04 0.13 295 0.811 3.02 0.11 620 0.811 2.96 0.05 872
50% 0.733 0.801 5.97 2.84 162 0.800 5.82 2.70 352 0.799 5.80 2.67 619 0.779 3.07 0.03 1002
60% 0.728 0.801 6.32 3.21 162 0.798 5.96 2.86 423 0.795 5.57 2.48 614 0.777 3.20 0.18 1089
70% 0.708 0.778 6.49 2.50 154 0.778 6.38 2.40 513 0.773 5.82 1.86 607 0.760 4.01 0.12 1190
80% 0.640 0.705 5.39 1.82 139 0.704 5.27 1.71 613 0.700 4.62 1.08 604 0.694 3.78 0.27 1310
90% 0.570 0.644 5.89 2.22 129 0.636 4.60 0.98 732 0.632 3.95 0.35 602 0.636 4.59 0.97 1395

the instances of the CIFAR-10 training set was used as UI
and the remaining 90% of the training set as LI .

Looking at the table, several remarks stand out. First of
all, it is not surprising to notice that the accuracy values (i.e.,
columns corresponding to A and A(0)) tend to decrease as the
percentage of unlabeled instances gets higher, since the LAL-
IGradV method is forced to handle progressively reduced sets
of labeled instances on its initial training. More interestingly,
the percentage increase of each of the LAL-IGradV variants
w.r.t. both Rnd and LCS is always positive — up to 6.5%
against Rnd and up to 3.2% against LCS — and it tends
to improve with higher percentages of unlabeled instances,
with peaks around 70% against Rnd and around 50-60%
against LCS. As concerns the impact of the importance scoring
technique, we observe that all the LAL-IGradV variants are
able to improve upon the accuracy at the initial training step.
Moreover, the direct similarity based techniques, i.e., DS and
RDS , reveal to be more efficient1 as well as more accurate
than the leave-one-out distance based techniques, for each
percentage of unlabeled set. We tend to ascribe this fact to
a higher sensitivity of the approach in capturing the gradient
direction change due to the individual contribution of an
instance rather than to the masking of a single instance in
the training gradient, which would result in a more diluted
signal of variation of the training gradient.

Figure 2 focuses on the percentage increase in accuracy that
each active learning method achieves by varying the fraction
of unlabeled instances. As expected due to the advantage of
performing an active learning task, the percentage increase
values tend to improve for higher fractions of unlabeled in-
stances. The trends are steeper for our LAL-IGradV methods,
particularly for DS and RDS , followed by LCS. Indeed, it is
worth emphasizing that our LAL-IGradV methods achieve the
best performance gain against the two baselines as the fraction
of labeled instances becomes smaller.

In Figs. 3 and 4, we delve into the trends of accuracy
percentage-increase obtained by a particular active learning
method, for varying k, i.e., number of unlabeled instances to
be selected at each epoch of the active learning process. At a
first glance, in each of the plots, we notice that the curve of
the percentage increase values over k is more likely to change

1Experiments were carried out on an Intel Core i7 CPU @2.90GHz, 32GB
RAM, with NVIDIA GeForce RTX 2070 Super GPU
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Fig. 2: Percentage increase of accuracy for the various ac-
tive learning methods, with varying percentage of unlabeled
instances, and number of selected instances (k) equal to 500

for larger fractions of the set of unlabeled instances, with the
most evident changes corresponding to 90%.

A few interesting remarks can be drawn from Fig. 3. When
portions of UI below 90% are selected, we observe a relatively
small range of variation of the percentage increase values
(approximately from 5% to 10%), with peaks around k = 500
for the DS and LD variants, and around k = 900 for the RDS
and RLD variants. This would hint at higher requirements
(i.e., higher k) needed for the importance scoring strategies
that compute discretized importance scores. Another remark
is on the curves corresponding to the use of 90% of the set
of unlabeled instances: compared to the curves corresponding
to lower fractions of UI , the percentage increase values are
higher on average, and the trends are quite different, especially
for the DS variant where we observe a minimum (rather than
a maximum) for k = 500. Apart from this exception, it is
worth noticing that better percentage increase of accuracy do
not necessarily correspond to a higher number k of selected
instances. This might be explained since the more unlabeled
instances are selected for labeling, the more the method is
less likely to make a correct choice for changing the most
the current model, as the latter is being trained only on few
instances, thus lacking full knowledge on the class distribution
of all the instances for available training.

Concerning the baseline methods (Fig. 4), two different
situations occur between the Rnd plot (on the left) and the
LCS plot (on the right). The former shows a decreasing trend
until mid values of k (i.e., around 500 instances) followed by
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Fig. 3: Percentage increase due to active learning based on our LAL-IGradV variants, by varying the number of selected
instances (k) and the percentage of labeled instances

0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000

P
e
rc

e
n
ta

g
e
 i
n
cr

e
a
se

Number of selected instances (k)

60% unlabeled

70% unlabeled

80% unlabeled

90% unlabeled

0

5

10

15

20

25

100 200 300 400 500 600 700 800 900 1000

P
er

ce
nt

ag
e 

in
cr

ea
se

Number of selected instances (k)

60% unlabeled

70% unlabeled

80% unlabeled

90% unlabeled

Fig. 4: Percentage increase due to active learning based on
Rnd (left) and on LCS (right), by varying the number of
selected instances (k) and the percentage of labeled instances

a rising trend, which sheds light on the divergent behavior of a
random selection of the unlabeled instances w.r.t. all the other
instance selection methods. Also, the LCS plot shows curves
that tend to monotonically decrease, resp. remain substantially
unchanged, for larger, resp. smaller, fractions of UI , which
again puts in evidence how our LAL-IGradV variants behave
differently from an uncertainty sampling approach like LCS.

Summary. Our proposed LAL-IGradV has shown that a
learning-to-active-learn by instance importance based gradient
variation improves significantly upon not only a random
baseline but also an uncertainty sampling approach like LCS.
LAL-IGradV methods are all able to increase the accuracy
at the initial training step, and tend to improve with higher
percentages of unlabeled instances. Yet, higher percentages of
unlabeled instances lead to an increased gain against LCS
and random baseline. LAL-IGradV methods are also not
particularly demanding in terms of number (k) of selected
instances to label at each active learning epoch.

IV. LIMITATIONS AND POSSIBLE ENHANCEMENTS

LAL-IGradV has shown satisfactory results in terms of a
significantly positive change in the accuracy of the classifier,
and this performance improvement is emphasized for increas-
ingly large sets of unlabeled instances, which makes LAL-
IGradV useful in practical scenarios.

Nonetheless, several aspects of our approach need to be
further investigated and enhanced. Our importance scoring

strategies might be improved in different ways. The impor-
tance of an instance could be measured not only in terms
of its own contribution to the model change but also w.r.t.
other instances, including both labeled and unlabeled ones,
according to some instance locality principle. In this regard, it
would be worthy to consider the data instance features, so as to
identify an instance’s neighborhood to evaluate in each step of
importance scoring. Features of the regressor (meta-features)
could also be incorporated into the instance selection steps,
although this would require to identify those features that are
suited to a specific type of regressor.

From an efficiency viewpoint, it would also be important to
define theoretical properties on the gradient direction change
in function of the number of top-k instances to be annotated
and/or the size of the batch of unlabeled instances available
for the active learning process, in order to prune the candidates
thus speeding up the active learning of the model.

Besides enhancements on the importance scoring and top-
k selection policies, different choices might be investigated
about the architecture and setting of the deep neural network
classifier. Our experimental evaluation focused on image data,
for which CNN models are known to be effective; clearly, the
choice of the neural network architecture might be dependent
on the type of the input data and on the target learning task.

LAL-IGradV exhibited quite different behavior w.r.t. not
only random instance selection, but also compared to an
uncertainty sampling method like LCS. However, a more
robust evaluation should be carried out to include a comparison
with state-of-the-art active learning methods, such as [8] and
more recently developed methods, possibly using larger data
from different application domains.

V. CONCLUSIONS

We proposed a learning-to-active-learn approach whose key
novelty is twofold: the integration of a regression-based meta-
learning approach within a maximum model-change frame-
work, and the definition of policies for scoring the instance
importance based on the amount of change in the learning
gradient of a deep neural network model.

LAL-IGradV source code is publicly available at
https://github.com/Franco7Scala/exploiting gradient.git.
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