
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

Generalized Preference Learning for
Trust Network Inference
DOMENICO MANDAGLIO1, and ANDREA TAGARELLI1
1Dept. Computer Engineering, Modeling, Electronics, and Systems Engineering (DIMES), University of Calabria, 87036 Rende (CS), Italy
(e-mail: d.mandaglio@dimes.unical.it,andrea.tagarelli@unical.it)

Corresponding author: A. Tagarelli (e-mail: andrea.tagarelli@unical.it).

ABSTRACT Trust inference is essential in a plethora of data mining and machine learning applications.
Unfortunately, conventional approaches to trust inference assume trust networks are available, while in
practice they must be derived from social network features. This is however a difficult task which has to
cope with challenges relating to scarcity, redundancy and noise in the available user interactions and other
social network features. In this work, we introduce the new problem of Trust Network Inference (TNI),
that is, inferring a trust network from a sequence of timestamped interaction networks. To solve the TNI
problem, we propose a principled approach based on a preference learning paradigm, under a preference-
based racing formulation. The proposed approach is suitable for addressing the above challenges, moreover
it is versatile (i.e., independent from the social network platform) and flexible w.r.t. the use of topological
and content-based information. Extensive experimental evaluation focusing on two distinct ground-truth
scenarios, has provided evidence of the meaningfulness and uniqueness of our TNI approach, which can
be regarded as key-enabling for any application that requires to handle a trust network associated with a
social environment.

INDEX TERMS trust computing, dynamic social networks, network inference, preference-based racing
algorithm

I. INTRODUCTION

THE term trust-based social network, or simply trust
network, commonly refers to a graph of entities (i.e.,

individuals) that are linked through asymmetric relationships
that correspond to subjective trust statements. Given a trust
network, trust inference is the task of predicting a new
relation between two nodes, so that the locally inferred
trust score can be regarded as a personalized opinion of
one user (trustor) with respect to another user (trustee).
Trust inference is an essential task in many data analysis
and machine learning applications, from social influence
propagation and opinion spreading to recommender systems
and privacy preserving, whose impact extends also to peer-
to-peer networks and mobile ad-hoc networks [20].

Challenges in trust inference. The conventional ap-
proach to trust inference is to compute the trust between any
two non-adjacent nodes in a trust network by considering
the different paths from one node to the other, as well
as strategies for trust propagation and for aggregating the
propagated trust values through different paths [20], [22].
Unfortunately, all existing trust-inference approaches rely
on the assumption that a trust network has been already

formed, while in reality trust networks are not naturally
available. Rather, trust relations must first be determined
from the available information in a social environment, e.g.,
the history of users’ activities and their interactions.

Computing trust relations is however a particularly dif-
ficult task, because of a number of challenges that already
arise at data source level (i.e., not considering the inevitable
bias of the particular algorithmic solution to the problem).
In fact, the amount of information representing the observed
interactions and activities of users in a social network, could
be limited in size as well as in quality. More specifically,
a social network may contain a significant amount of
redundant or irrelevant relations as well as noise in the
information that express the strength of interaction between
any two users.

Contributions. In this work, we face the above chal-
lenges by addressing a new problem we named Trust
Network Inference (TNI). Given a sequence of timestamped
interaction networks as input, the goal of TNI is to infer
from this sequence a directed weighted network, whose
nodes are the users in the temporal networks and links
denote trust relationships with associated trust scores.
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It should be emphasized that in TNI there is no depen-
dency on existing trust relations to make predictions on
trustworthiness scores or on new trust relations. Therefore,
TNI emerges as a divergence from the conventional trust
inference and trust link prediction problems (e.g., [7], [12],
[15], [16]). Also, TNI differs from trust ranking methods
(e.g., [8], [10], [17]), since in TNI the building of trust
relations is extended to all nodes in a network, not only to
the most trusted or reputable ones. Furthermore, our TNI
problem is different from the one treated in [6], which
considers trustworthiness and untrustworthiness inference
through clustering all entities into two groups (i.e., good and
misbehaved), under various representative attack models.

We propose to solve the TNI problem based on a
generalized preference learning paradigm. We believe that
preference learning provides key advantages in addressing
all the aforementioned issues, i.e., limitedness, redundancy
and noisy of the information about the users’ interactions
from which a trust network is to be inferred. More specifi-
cally, under a preference-based top-k selection problem, our
proposed approach aims to find a ranking of the preferential
pairings that each target entity would choose to form its
trust relationships. To this purpose, we resort to an adap-
tive sampling strategy, and instatiate it according to three
canonical ranking models that correspond to different levels
of ranking pairwise preferences. One further key feature of
our approach is domain-independency, as it does not rely on
platform-specific types of user interactions. Nonetheless, our
approach is designed to exploit both topological information
and, when available, content information relating to the user
interaction dynamics.

Evaluating inferred trust relations and associated scores
is another critical aspect in research contexts related to
trust computing. In this work, we also cope with such
a challenge and devise two scenarios based on distinct
notions of ground-truth: the one referring to the availability
of trust classes (i.e., cohesive groups of mutually trusted
users), and the other corresponding to the availability of a
reference trust network. Our extensive, ground-truth-driven
experimental evaluation has shown the meaningfulness of
our proposed approach in both evaluation scenarios, on
several dynamic interaction networks and against competing
methods.

Plan of the paper. The remainder of this paper is
organized as follows. Section II briefly discusses related
work on trust inference — note that, given the relative
novelty of the TNI problem under consideration, we shall
provide a deliberately concise summary of major existing
notions and approaches to trust inference, without any
ambition to survey methods for trust computing. Section III
introduces the problem of Trust Network Inference, and Sec-
tion IV describes our proposed approach. Sections V and VI
present methodology, data and results of our experimental
evaluation. Finally, Section VII concludes the paper.

II. RELATED WORK ON TRUST INFERENCE
Trust inference has attracted much attention in data mining
and related fields, and a variety of studies have been
proposed in literature [20]. One way of interpreting the
problem of trust inference is to model it in terms of either
edge feature or node feature, a.k.a. “local” and “global” trust
computing. In the first case, a trust relation is to be created
for any two non-adjacent nodes in a network, through a
mechanism of inference, resp. prediction, if the network is
modeled on existing trust relations (i.e., it is a trust network)
(e.g., [7], [12], [15], [16]), resp. on social network features
(e.g., [2], [21]). Conversely, trust inference at node-level
corresponds to computing a trust score for each node in
a network, and hence it is more appropriately regarded as
a trust-oriented global ranking of the users, which can be
useful to build trust communities [17], or in general to
discriminate between objectively trust and distrust entities
in a network (e.g., [8], [10], [19]).

Our work refers to the local-trust computing perspective.
However, as already mentioned in the Introduction, we
address the trust network inference problem, for which the
trust network is the output, rather than the input as in con-
ventional trust inference approaches. Note also that our work
is substantially different from previous attempts to TNI-
related problems, such as [12]: in that work, a user-domain-
based trusted acquaintance chain discovery algorithm is de-
veloped to make the computation of short trusted paths more
efficient; however, unlike our approach, the method in [12]
strongly depends on the definition of domains/categories for
the content in the input social network. Also, our inference
problem is different from the one considered in [6], which
assumes that all entities are clustered into two groups (i.e.,
good and misbehaved entities), and a belief propagation
method is developed to estimate that one entity belongs to
different groups, simultaneously inferring its trustworthiness
and untrustworthiness values, according to different attack
models in interactional networks.

III. PROBLEM STATEMENT
We are given a set V of entities in a social environment (i.e.,
users), and a temporal network G as a series of graphs over
discrete time steps (G1, G2, . . . , GT ), with time horizon T ,
where Gt = 〈Vt, Et, wt〉, with 1 ≤ t ≤ T , is the graph at
time t, with set of nodes Vt and set of directed edges Et.
Each node in Vt corresponds to a specific instance from
the subset Vt of entities that occur at time t. Note that
entities might occasionally appear and disappear in different
time steps. Each edge e = (vi, vj) ∈ Et corresponds to an
observed interaction between nodes vi, vj , which can be of
different type depending on the specific functionalities and
information available from the online social environment
under consideration (e.g., mentions, answers/replies, re-
posts, etc). The snapshot graphs Gt are also associated with
an edge weighting function wt(·) to quantify the strength
of each interaction; by default, the weight of an edge is set
to 1.
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TABLE 1: Main notations and their descriptions

symbol description
G; Gt = 〈Vt, Et, wt〉 series of graphs; graph at time t
V; Vt set of entities or actors in G; in Gt
T = 〈V, E, ω〉 trust network (to be inferred from G)
C; Cv trust-context model; trust-context (induced

subgraph) for entity v
o; O option; set of options (alternatives)
N ; k total (resp. selected) number of options
R ranking model
≺R strict preference order relation

over a pair of options, according to R
CO Copeland’s ranking model
SE sum-of-expectations ranking model
RW random-walk ranking model
1− δ predefined confidence (for the top-k

selection problem)
Yi,j random variable associated to

comparison of oi with oj
y
(t)
i,j t-th observed outcome of Yi,j

Y preference relation matrix
nmax number of samplings for each pairwise

preference probability distribution Yi,j
sim

(t)
S ; sim(t)

C structural (resp. content) affinity function
for node comparison in Gt

α smoothing parameter to weight sim(t)
C

w.r.t. sim(t)
S

We consider the Trust Network Inference (TNI) problem,
that is, generating a new network from interactional dy-
namics observed through G, whose nodes correspond to the
entities V in G and links are inferred to denote a trust/distrust
relationship between any two entities that satisfy certain
relational constraints. Such constraints are meant to be
specified w.r.t. a predetermined scheme of selection of trust-
context, denoted as C.

The trust-context is a model for inducing a subgraph
of G from each entity v, denoted as Cv , whose structural
expansion intuitively corresponds to the extent of trust that
v can exert towards other entities. Note that the induced
trust-context subgraphs of any two entities are not to be
necessarily disjoint.

We will refer to the trust network inferred from G, w.r.t.
a trust-context scheme C, as a weighted directed graph T =
〈V, E , ω〉, with set of trust links E =

⋃
v∈V Ev , where Ev is

a set of edges between entities in the node-set of the induced
subgraph Cv for v in accord with C, and ω : E → [0, 1] is a
weighting function that specifies the trust level of each link,
where 0 means total lack of trust (i.e., distrust) and 1 means
fully trust from a source to a target node. We intuitively
formulate the TNI problem as follows:

Problem 1 (Trust Network Inference (TNI)): Given a
temporal network G built over interactions observed in a
time period T between entities in a set V , and given a trust-
context scheme C, infer a trust network T for all entities
in V by exploiting the topological information available
from each snapshot of G (along with, optionally, content-
based information of the interactions) according to the trust-
context scheme C.

IV. OUR PROPOSED METHOD FOR TRUST NETWORK
INFERENCE
We propose to solve the TNI problem through a generaliza-
tion of the preference-based top-k selection problem over
each entity in the input temporal network. Next, we provide
background on that, then we discuss details on our proposal.
Table 1 summarizes main notations used throughout the rest
of the paper.

A. BACKGROUND ON PREFERENCE-BASED TOP-K
SELECTION
Consider a finite set of decision alternatives, or options,
O = {o1, . . . , oN}, for which the following assumptions
hold: (i) the options in this set are pairwise comparable, (ii)
there exists a finite number of samples, from an unknown
pairwise-preference distribution, that provide information
about whether or not an option might be preferred to another
one, and (iii) the samples could be “noisy” (i.e., they could
significantly vary w.r.t. the unknown distribution model).

The preference-based top-k selection problem is to
choose the set of k options (k < N ) that maximize the
preference over all alternatives, which is formally equivalent
to the following optimization problem:

argmax
S⊂O,|S|=k

∑
oi∈S

∑
oj∈O∧j 6=i

I{oj ≺R oi}, (1)

where ≺R is a strict preference order relation according to a
predefined ranking model R, such that oj ≺R oi means the
option oi is preferred to oj , and I{·} is the indicator function
which is equal to 1 if the argument is true, 0 otherwise.
Note also that, given that the outcomes of the pairwise
comparisons could be noisy and the available number of
samplings are limited, the optimality of the solution to Eq.
1 should be guaranteed with probability at least 1 − δ, for
any predefined probability δ; typically, δ = 0.1.

To quantify the pairwise preferences, the outcome of a
comparison between oi and oj is modeled as a random
variable Yi,j , which assumes value 0 (resp. 1) if oi ≺ oj
(resp. oi � oj), and a “neutral” 1/2 otherwise. Given a pair
oi, oj and a set of ni,j realizations of their comparison
{y(1)

i,j , ..., y
(ni,j)
i,j } of Yi,j , assumed to be independent, the

expected value yi,j := E[Yi,j ] can be estimated as:

ȳi,j =
1

ni,j

ni,j∑
l=1

y
(l)
i,j . (2)

1) Ranking models
A ranking model R produces a complete order of the
options in O upon the preference relation matrix Y =
[yi,j ]N×N ∈ [0, 1]N×N . Following [4], we consider three
different models: (i) Copeland’s ranking (CO), (ii) weighted
voting, or sum of expectations (SE), and (iii) random walk
(RW) ranking.

Copeland’s ranking determines that option oi is preferred
to option oj (oj ≺CO oi) if and only if bj < bi, where
bi = |{oh ∈ O | yi,h > 1

2}|, i.e., whenever oi beats more
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FIGURE 1: Overview of our proposed framework for trust network inference

Algorithm 1 TRUST NETWORK INFERENCE(G =
(G1, ., GT ), C , R, k, nmax , δ)
1: Υ← ∅
2: for all v ∈ V do
3: Ov ← computeTrustContextOptions(G, v, C)
4: Y ← PDPP(G, v, Ov) {Probability distributions of pairwise

preferences for v}
5: Ȳ ← PBR(Y, v, Ov , k, nmax, δ, R) {Preference-based racing

to compute the ranking scores}
6: Υ← Υ ∪ {Ȳ}
7: end for
8: 〈E, ω〉 ← computeTrustEdges(Υ,R)
9: return T = 〈V, E, ω〉

options that oj does. According to sum of expectations rank-
ing, oj ≺SE oi holds if and only if

∑
h 6=j yj,h <

∑
h6=i yi,h.

Random walk ranking first requires a left-stochastic version
S = [sij ]N×N of the matrix Y, such that si,j =

yi,j∑N
l=1 yl,j

.
Then, the ranking of options is determined as the stationary
probability distribution π = (π1, . . . , πN ) of the Markov
chain underlying S. Finally, the options are ranked ac-
cording to the computed probabilities, i.e., oj ≺RW oi iff
πj < πi.

B. THE TNI ALGORITHM
Given a temporal network G, we solve the TNI problem as
a generalized preference-based top-k selection problem, for
each entity in G, under constraints given by a predefined
trust-context scheme C. The model C is used to determine
the options O for pairing each target entity with its “trust-
worthy” entities.

Our idea is to generate the edges and associated scores of
the trust network to be inferred on the basis of the solution
of a preference-based racing (PBR) algorithm applied to
each target entity. PBR is a particular approach to the top-k
selection problem based on an adaptive sampling strategy.

A schematic depiction of the proposed framework for
trust network inference is presented in Figure 1, whereas
Algorithm 1 shows the pseudo-code of our TNI method.
The algorithm works as follows: for each entity v in the
temporal network G, it starts with the identification of the
entity-options for v according to a predefined trust-context
model C (Line 3). Then, the probability distributions of

pairwise preferences (PDPP) Y are computed for v based
on its interaction activities observed in G (Line 4). Using
a preference-based racing algorithmic scheme, a ranking of
trust relations is computed for v according to a selected
ranking model R (Line 5). Finally, the solutions provided
by the racing procedure for all entities are used to determine
both the edges and the trust scores (Line 8) to output the
trust network T . We now elaborate on each of the main
steps in Algorithm 1.

1) Computing the trust-context of entities
The trust-context model C corresponds to the search space
for the entity-options to identify as the trustworthy ones
for any given target entity. One intuitive way of defining C
is to instantiate it as the ego-network of the target entity.
This notion is also supported by previous studies on trust
inference which have provided evidence on that shorter
paths from the trustor are more accurate to predict trust [7],
and that the dilution of trust through the propagation process
tends to weaken the predicted trust [13].

In the following, we will refer to the above definition
of trust-context model, restricted to the out-neighborhood
of any target entity v, i.e., all entities occurring as out-
neighbors of v in at least one snapshot graph in G. Clearly,
the search space for the TNI problem can also be defined
according to other topological structures, such as expanded
ego-networks or community structures. This is left as a
further direction of research.

2) Building the preference distributions
As previously discussed in Sect. IV-A, the true pairwise
preference distributions are assumed to be unknown, how-
ever their realizations (i.e., outcomes of random variables
Yi,j) can be estimated as the observations of interaction at
each snapshot Gt.

Given a target entity v in G, every pair of entities
occurring within its trust-context Cv are regarded as op-
tions for v, which can be compared at most T times.
For entities vi and vj , we denote the outcomes of these
comparisons (w.r.t. v) as Yi,j = y

(1)
i,j , . . . , y

(T )
i,j . To build

each of the pairwise preference distributions for any entity
v, we consider, for each snapshot Gt = 〈Vt, Et, wt〉, the set
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of v’s outgoing nodes, denoted as Nt(v), and evaluate the
following outcomes for the variables Yi,j associated to v:

Outcome 1: vi /∈ Nt(v)∧vj /∈ Nt(v). In this case, the two
entities vi and vj are not comparable at time t, although,
being both in Cv , they will be in some other snapshot. But
at time t, vi and vj will not be considered to determine y(t)

i,j .
Outcome 2: vi ∈ Nt(v) ∨ vj ∈ Nt(v). Let us consider a

node-similarity function sim(t) : Vt×Vt 7→ [0, 1] and define
it as a linear combination of two functions:
• a structural affinity function sim

(t)
S : this can ef-

ficiently be computed by resorting to standard
neighborhood-based overlap measures; for instance,
Jaccard similarity, i.e., sim(t)

S (v, vi) = |Nt(v)∩Nt(vi)|
|Nt(v)∪Nt(vi)| ),

or Adamic-Adar index, i.e., sim
(t)
S (v, vi) =∑

u∈Nt(v)∩Nt(vi)
log(|Nt(u)|)−1. One alternative is to

consider a vector similarity function to apply to the
multidimensional representations of any two nodes,
which would be obtained through node-embedding
techniques in graphs, such as, e.g., node2vec (see [5]
for a comprehensive survey).

• a content affinity function sim(t)
C : the edge-weighting

function wt expresses the strength of content-based
interaction for any two nodes in Gt, therefore
sim

(t)
C (v, vi) := wt(v, vi). To this aim, we might

consider the opportunity of computing a sentiment
score associated with the available text content (cf.
Sect. V). Note that, if no content-based information
is associated with the interaction between v and vi at
time t, wt(v, vi) is assumed to be 1.

The two above functions are hence combined as follows:

sim(t)(v, vi) = α·sim(t)
C (v, vi)+(1−α)·sim(t)

S (v, vi), (3)

for any pair (v, vi), with α ∈ [0, 1] (by default set to 0.5).
Finally, we compute the v’s preference of choosing vi

over node vj at time t as the probability value given by the
following logistic function:

y
(t)
i,j :=Pr(vi � vj)=

1

1 + e−f(i,j)·(sim(t)(v,vi)−sim(t)(v,vj))
,

(4)
where f(i, j) corresponds to the steepness of the logistic,
we define as f(i, j) = λ · (sim(t)(v, vi) + sim(t)(v, vj)),
where λ is a scaling factor. Our motivation behind this
analytical choice is twofold. First, since the similarity values
range in [0, 1], and hence their differences range in [−1, 1],
the full domain of values of the logistic function would
not be used if the steepness value was 1. Therefore, we
introduce a scaling factor to better distribute the y(t)

i,j values
within (0, 1); for this purpose, we set λ to 10, which
ensures the spanning through the interval (0, 1). Moreover,
our definition of the steepness function and λ setting is
such that the sum of similarities is considered to weight
more pairwise comparisons between more similar entities
than dissimilar ones. Note also that Eq. 4 is symmetric, i.e.,
Pr(vi � vj) = 1− Pr(vj � vi).

Algorithm 2 PDPP(G = (G1, . . . , GT ), v,O)
1: Initialize Y = [Yi,j ]N×N with empty lists
2: for t = 1 to T do
3: for (vi, vj) ∈ O ×O, vi 6= vj 6= v, vi 6= v do
4: if vi ∈ Nt(v) ∨ vj ∈ Nt(v) then
5: Compute sim(t)(v, vi) and sim(t)(v, vj)

6: y
(t)
i,j ← Pr(vi � vj) {Using Eq. 4}

7: add(Yi,j , y
(t)
i,j )

8: return Y

Algorithm 3 PBR(Y, v,O, k, nmax, δ,R)

1: S = D ← ∅ {Set of selected (S) and discarded (D) options}
2: Initialize with zeros: B = [ci,j ]N×N , Bu = [ui,j ]N×N , B` =

[li,j ]N×N {Confidence bound matrices}
3: ni,j ← 0, ∀oi, oj ∈ O {Sample counts}
4: A← {(oi, oj)|i 6= j, 1 ≤ i, j ≤ |O|} {Set of active option pairs}
5: while (ni,j ≤ nmax,∀i∀j) ∧ |A| > 0 do
6: for all (oi, oj) ∈ A do
7: ni,j ← ni,j + 1

8: y
(ni,j)

i,j ∼ Yi,j {Sample from the pairwise preference
probability distribution}

9: end for
10: Update Ȳ = [ȳi,j ]N×N with the new samples {Using Eq. (2)}
11: for i, j = 1 to N do

12: ci,j ←
√

1
2ni,j

log 2N2nmax
δ

{Update Hoeffding confidence

bounds Bu,B`,B}
13: li,j ← ȳi,j − ci,j , ui,j ← ȳi,j + ci,j
14: end for
15: (A,S,D) ← SamplingStrategy(R, A, Ȳ, N, k,Bu,B`,B, D)

{Algorithm 4}
16: end while
17: return S, Ȳ

Algorithm 4 SamplingStrategy(R, A, Ȳ, N, k,Bu,B`,B, D)

1: S ← optionsToSelect(A,B`,Bu, N, k,R)
2: D ← D ∪ optionsToDiscard(A,B`,Bu, N, k,R)
3: for (oi, oj) ∈ A do
4: if !isStillToUpdate((oi, oj), S,D,B`,Bu,B, Ȳ,R) then
5: A = A \ {(oi, oj)}
6: S ← top-k options according to R
7: return (A,S,D)

Upon the above definitions, we build the pairwise pref-
erence distributions for a target node v as shown in Algo-
rithm 2. Sampling from these distributions will correspond
to randomly extracting an element from the lists Yi,j .
It should be emphasized that this sampling is important
to ensure robustness of the whole approach w.r.t. noisy
comparisons; we shall discuss this point later in Sect. IV-B3
The output of Algorithm 2 then becomes the input for the
preference-based racing algorithm (Algorithm 3). It should
be noted that our approach to the computation of pair-
wise preference distributions diverges from the one adopted
in [4]: here, while we still do not evaluate single options
quantitatively (as in value-based racing), we let any variable
Yi,j assume values within the range (0, 1), to express a
degree of preference of oi over oj , rather than a 0/1 (or
ternary) decision (cf. Sect. IV-A).
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3) Preference-based Racing

Following [4], the preference-based racing (PBR) proce-
dure, shown in Algorithm 3, is responsible for identifying,
among the entities in the context O of an input target entity,
the top-k trustworthy ones (or equivalently the top-k trust
edges) according to a predefined ranking model R. Besides
k,R, and the probability guarantee (δ, cf. Sect. IV-A), the
algorithm requires an additional parameter, nmax, to con-
trol the number of samplings for each pairwise preference
probability distribution (i.e., Yi,j , with oi, oj ∈ O).

As mentioned before, the sampling step from each of
the pairwise preference probability distributions lends the
algorithm more robust to the presence of “noise”, i.e.,
irrelevant node-relations such as sporadical links and/or
wrongly observed links that may occur across the input
temporal network.

The algorithm also maintains a set of active pairs of
options (A), i.e., options whose pairwise preference distri-
butions need to be sampled more in order to decide which
one is better, with enough high degree of confidence. Racing
methods employ confidence intervals, typically computed
through the Hoeffding bound, derived from the concentra-
tion property of the mean estimate [4]. To this purpose, Al-
gorithm 3 maintains the estimates yi,j with their confidence
intervals [`i,j , ui,j ] and iteratively samples from the pairwise
preference distribution until there is enough confidence
about the top-k nodes or the maximum number of samplings
is reached (Line 5). According to the updates values of
confidence bounds, the set of current selected options S
(i.e., top-k ones) and discarded options D (not top-k) are
updated. This is handled by procedure SamplingStrategy
(Line 15), which is sketched in Algorithm 4.

According to [4], Algorithm 4 initially checks if some
options can be included among the top-k or discarded ones
with high enough probability (Lines 1 and 2). This step
is performed differently according to the ranking model R
(cf. Sect. IV-A), whereby the confidence intervals are used to
decide with high probability that an option is better or worse
than another. Next we provide details about the different
sampling strategies.

• CO-based strategy: the aforementioned step is per-
formed by counting, for each option oi, the set of
better options wi = |{oj | li,j > 1/2, i 6= j}| and
worse options zi = |{oj | ui,j < 1/2, i 6= j}|. Then,
an option oi is among the top-k options with high
probability if |{oj | |O| − zi < wj}| > |O| − k while
it is to be discarded if |{oj | |O| − wi < zj}| > k.

• SE-based strategy: in this case, first the ranking score
definition is applied to lower/upper bounds, i.e., for
each option oi, the averages li = 1

|O|−1

∑
j 6=i li,j and

ui = 1
|O|−1

∑
j 6=i ui,j are computed. Then, similarly to

the CO case, an option oi is included among the top-
k options with high probability if |{oj | uj < li}| >
|O| − k and discarded if |{oj | ui < lj}| > k.

• RW-based strategy: when RW is used as ranking model,

selecting and discarding of option is based on the ex-
ploitation of properties of the stationary distribution of
transition matrices. An upper bound on the difference
between the estimated stationary distribution and the
unknown true one is used in order to select the next
pairwise preference distributions to sample from: the
pairs selected are those whose sampling enable as much
decrease as possible of this upper bound. Moreover,
the same bound is exploited in order to determine the
stopping criterion of the PBR procedure. Formal details
are reported in Appendix.

For each active pair of options (oi, oj), a condition is
checked (Line 4) to decide whether it is not necessary
anymore to sample from the pairwise preference distribution
of (oi, oj) — this holds either because with high probability
oi is better (resp. worse) than oj or because one of the two
options need to be selected (resp. discarded).

The role of k in the PBR procedure. It is worth
noting that Algorithm 3 outputs the top-k trustworthy nodes
together with the whole preference estimates Ȳ, which
are fed into the computeTrustEdges function to finally
compute the trust edge-weights in the trust network. This
is done since, besides identifying the top-k trust edges (i.e.,
trust relationships), our goal is also to infer distrust links,
which can be extracted through Ȳ. In other terms, k takes
the role of model parameter in the PBR procedure and only
within the scope of this procedure; by contrast, in order
to infer the trust network, all preference estimates may be
taken into account so that each node may have more than
k trust/distrust outgoing links.

4) Computing the trust edge-weights
For any given target entity v, the edge-weights in the trust
network being generated are differently computed depend-
ing on the chosen ranking model and sampling strategy.
For each vi in the Ȳ matrix associated to v, using the
Copeland’s ranking, we set ω(v, vi) =

|ȳi,j :ȳi,j>
1
2 ,i6=j|

|Ov| . Note
that the normalization is required since we want trust scores
ranging in [0, 1]. For the other two sampling strategies,
no normalization is required since the ranking scores are
already in [0, 1]. In fact, for the SE-based strategy, we set
ω(v, vi) = ȳi,j , whereas for the RW-based strategy, we
set the edge weights to the values stored in the stationary
distribution π, i.e., ω(v, vi) = πvi .

C. COMPUTATIONAL COMPLEXITY ASPECTS
The time complexity of TNI is determined by the cost of
its two main phases: computing the preference probability
distributions and preference-based racing.

Given a target entity v and its context Ov , the time
complexity of building its preference distributions (Algo-
rithm 2) is O(T |Ov|2τsim), where τsim is the cost of
similarity computation. This is explained since we need to
make |Ov|(|Ov| − 1)/2 pairwise preference comparisons
(through Eq. 3) between entities vi, vj ∈ Ov for each of
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the T timesteps, and each of these comparisons involves
two structural similarity computations (i.e., sim(v, vi) and
sim(v, vj)).

The asymptotic cost of the second phase (Algorithm 3) is
determined by the loop which, in the worst case, is executed
nmax times when a satisfactory (according to δ) solution to
the PBR problem cannot be found before.The cost of each
iteration is O(|Ov|2 + τSS), where τSS is the cost of the
sampling strategy. Moreover, τSS = O(|Ov|2) for each of
the sampling strategies we considered, because we need to
check (in constant time) a condition for each pair of options
(Line 4 in Algorithm 4). Thus, the cost of the second phase
is O(nmax|Ov|2).

The temporal cost of TNI for each entity v is O(T |Ov|2
τsim + nmax|Ov|2) = O(|Ov|2(T · τsim + nmax)), and the
total cost is O(

∑
v∈V |Ov|2 (Tτsim + nmax)).

The spatial cost to solve TNI for each target entity
v is determined by the space needed to store the pair-
wise preference distributions, thus its asymptotic growth is
O(T · |Ov|2), since we need to store for each timestep the
O(|Ov|2) pairwise preference realizations which made up
the distributions. The overall space complexity is O(T ·
(maxv∈V |Ov|)2), since we can sequentially and indepen-
dently solve the set of |V| PBR problems. Nonetheless, the
approach is easily parallelizable by partitioning the set of
entities, independently solving the PBR subproblems, then
merging the results.

V. EVALUATION METHODOLOGY
We present our ground-truth-based methodology (Sect. V-A),
the evaluation criteria (Sect. V-B) and datasets (Sect. V-C).
Also, in Sect. V-D, we discuss the methods involved in a
stage of comparative evaluation with TNI.

A. GROUND-TRUTH FOR TRUST NETWORK
INFERENCE
To assess the meaningfulness of the results obtained by
our TNI, we conducted different stages of evaluation based
on two general, all-inclusive notions of ground-truth. These
are hereinafter referred to as trust-class ground-truth and
trust-network ground-truth. As reported in the summary of
Table 2, a ground-truth in our setting is either based on the
notion of trust class or on the availability of a reference
trust network for the input dynamic network.

The former corresponds to trust relations existing within
a cohesive group of users in the input dynamic network, i.e.,
a trust class is regarded as a group of individuals whereby
it is likely that they trust each other while they do not trust
individuals outside the group. As exemplary domains, we
recognize inferring trust network from interactions in real-
life parties (i.e., contact networks) and from interactions
occurring in collaborative networks (Table 2). Notably,
given the relation of trust classes with the time-evolving
interaction data, this ground-truth-based approach can help
assess the discovery of trust/distrust relationships that are
latent in the interaction data.

Trust-network ground-truth instead relies on a finer-grain
type of trust relation, i.e., between pairs of users, which
corresponds to the availability of a trust network that is
regarded as a reference for the input dynamic network. The
challenge in this case is that the ground-truth network may
not be necessarily derived from interactions observed in the
input time-evolving network data (i.e., two users may trust
each other even though they never had a direct connection).

It should be emphasized that both the ground-truth classes
and the reference trust networks were used not to infer a
trust network, but only for evaluation purposes.

B. ASSESSMENT CRITERIA
Given a trust network T = 〈V, E , ω〉 inferred from a
dynamic interaction network G, we define a ground-truth
trust classification as a partitioning Γ of the set of entities
V into disjoint trust classes. Also, we denote with Γ(v)
the trust-class of entity v. We considered the following
trust-class ground-truth based assessment criteria, for each
entity v:
• Binary preference (Bpref) [3], which measures how

many judged relevant candidates Rel are retrieved
(i.e., occur in T ) ahead of judged irrelevant candidates
notRel:

bpref(v) =
1

|Rel|
∑

vr∈Rel

1− |rankedHigher(vr)|
|Rel|

,

where vr is a relevant retrieved candidate, vi is a mem-
ber of the first |Rel| irrelevant retrieved candidates,
and rankedHigher(vr) = {vi ∈ notRel | ω(v, vi) >
ω(v, vr)}. We define Rel (resp. notRel) as the set
of out-neighbors of v in T such that Γ(u) = Γ(v)
(resp. Γ(u) 6= Γ(v)). The global bpref of a trust
network is computed as the average entity bpref, i.e.,
bpref(V) = 1

|V|
∑

v∈V bpref(v).
• Average intra-class trust, as the average trust amount

settled by v towards individuals within the same trust-
class:

ΩΓ(v) =
1

|Rel|
∑

vr∈Rel

ω(v, vr).

• Average extra-class trust, as the average trust amount
settled by v towards individuals outside the v’s trust-
class:

Ω¬Γ(v) =
1

|notRel|
∑

vi∈notRel

ω(v, vi).

For the second type of ground-truth-based evaluation,
given the availability of a reference trust network, we
used it for a network similarity evaluation task, measuring
Precision, Recall and F1-score. For any given T produced
by TNI and reference network T ∗, both with set of nodes V ,
precision (resp. recall) corresponds to the fraction of edges
in T (resp. T ∗) shared with the other network, whereas
F1-score is the harmonic mean of precision and recall.
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TABLE 2: Ground-truth based evaluation types

trust relation explicit network domain type case studies
information

Trust-Class within-group links no Inferring trust network from interactions in real-life parties Political parties
yes Inferring trust network from interactions in online collaborative system Wikipedia editing

Trust-Network individual pairs yes Inferring trust network from interactions in profit-based circles Product rating

TABLE 3: Main structural features of our evaluation net-
work datasets

#entities #edges #time avg.
(|V|) steps (T ) density

DKpol, 490 1 821 30 0.074DKpol-c
DKpol-exp, 490 288 680 32 0.047DKpol-exp-c
WikiEdit 1 115 33 304 49 0.06WikiEdit-exp
CiaoDVD 17 615 348 791 27 0.0174CiaoDVD-c

C. CASE STUDIES AND DATASETS
We used 3 real-world, publicly available datasets:
DKpol [11], WikiEdit,1 and CiaoDVD [9]. According to
Table 2, the former two were used for the trust-class ground-
truth evaluation, the latter for the trust-network ground-truth
evaluation. Table 3 provides a summary of structural char-
acteristics of our evaluation networks. Also, we considered
content-based variants, for a total of 8 networks used in our
evaluation.

1) DKpol: Trust inference for political parties
DKpol contains Twitter following and activity data (i.e.,
tweets, retweets and replies) originally collected from the
profiles of Danish politicians during the month leading to the
parliamentary election in 2015. The profiled 494 politicians
are distributed across 10 parties, each of which was regarded
as one trust-class, i.e., politicians who are affiliated to
the same party are supposed to trust each other, while
distrusting politicians of other parties. By aggregating the
user interactions on a daily basis, we extracted 30 directed
networks such that, in the t-th snapshot, an edge from u to v
is drawn if, at time t, u mentioned v, retweeted a v’s tweet,
or replied to a v’s tweet. Starting from DKpol, we built
a weighted network variant, dubbed DKpol-c, whereby the
tweet contents are subjected to tool for sentiment analysis in
Danish texts [18]. Each edge (u, v) in DKpol-c is weighted
with a float value in [0, 1] corresponding to the highest
mood-score computed by the tool for the text of the tweet(s)
posted by v and mentioned/replied/retweeted by u.

In order to stress our approach, we added noise to the data
by simulating a multicast propagation of tweets/retweets
made by a user towards her/his followers. In this scenario,
which resulted in the DKpol-exp network, a tweet/retweet
of user u triggers a set of links from u’s followers to u. In
addition, we built a content-based weighted variant, DKpol-

1It will be made available at http://people.dimes.unical.it/andreatagarelli/data/.

exp-c, whose follower links are weighted with the neutral
score of 0.5. Our rationale is that such links correspond
to weak ties and, therefore, they would not be considered
for the direct linkage contribution in Eq. 3 (i.e., sim(t)

C set
to zero), however they are still considered in the structural
similarity computations.

2) WikiEdit: Trust inference for a collaboration system
Our second case study concerns the context of Wikipedia
page editing, which normally gives rise to either controversy
or agreement among the editors. Our goal was to infer a trust
network by observing the editing activities made by a set of
users over a selection of pages of VIPs (from politics, sport,
and other categories). The possible edit events are ‘add’,
‘delete’ or ‘restore’ content. The amount of text involved in
each edit is quantified by the number of used words. Based
on this information, we built the temporal network WikiEdit
by considering the edits related to 10 among the top-edited
pages and aggregating the events on a monthly basis. The
WikiEdit network was obtained by modeling each edit event
(of any type) made by a user u at time t as a set of edges in
the t-th snapshot directed from u to each other user involved
in the edit. In particular, the ‘add’ event involves only the
active user (who performs the edit) while each ‘delete’ or
‘restore’ event is also annotated with the target user (the one
who previously added/deleted the text). Each interaction e
between two users is also labeled with a sign: ‘positive’
if they agree with the edit corresponding to the interaction,
‘negative’ otherwise. We exploit this additional information,
together with the number of words nwe involved in the edit,
in order to compute the weight we of the interaction by
means the following logistic function:

we = (1 + e−sign(e)·log10(1+wce))−1,

where sign(e) = +1 if e is a positive interaction, -1
otherwise. Note that positive (resp. negative) interactions
will have weights higher (resp. lower) than 0.5.

We also considered an expanded version of WikiEdit,
dubbed WikiEdit-exp. In this case, for each ‘add’ edit to
page p made by user u at time t, we created weak ties
(with neutral weight 0.5) from u to each other user that
added content to p before t in order to represent a weak
form of agreement of u towards the past ‘add’ edits made
to p.

We created a graph where nodes are the page editors and
links correspond to positive interactions between editors. On
this graph, we applied the well-known Louvain community
detection method [1] to obtain a partitioning of nodes that
we consider as ground-truth communities for the evaluation.

8
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3) Inferred trust network vs. reference trust network
For the trust-network ground-truth evaluation task, we con-
sidered the CiaoDVD dataset where users provide movie
ratings (from 0 to 5) and can define their own local trust
network by adding other users to their trust circle. The
latter is considered as the ground-truth trust network for
our evaluation.

We derived two temporal networks, CiaoDVD and
CiaoDVD-c, where we aggregated the ratings on a monthly
basis and extracted an edge from node u to v, in the
t-snapshot, if there is at least one movie rated by both
users in that month and v rated it before u. The rating
similarity of the users is exploited to quantify the strength of
interaction in the weighted version of the network, dubbed
CiaoDVD-c. More specifically, given two users u and v
and a set of M movies rated by both users at time t, and
let ru = [ru,1 . . . , ru,M ] and rv = [rv,1, . . . , rv,M ] be the
associated ratings vectors, we quantify the strength of the
interaction as:

w(u, v) = 1− 1

M

M∑
i=1

∣∣∣ru,i
5
− rv,i

5

∣∣∣.
D. COMPETING METHODS
We finally considered a comparative evaluation stage with
a twofold goal: comparing the trust network inferred by our
TNI w.r.t. a trust network built by (i) a data-driven baseline
and (ii) a local-trust inference method (cf. Sect. II).

Our defined data-driven baseline (DDB) infers a trust
network by aggregating the interactions observed in an input
temporal network over all timesteps. In particular, for DKpol
and CiaoDVD networks, the trust score of an edge (u, v) is
computed as Wu,v/Wu, where Wu,v here denotes the sum
of weights of the interactions from u to v over all timesteps
and Wu is the total sum of weights of interactions of u with
any other node. For WikiEdit networks, the trust score of
an edge (u, v) is computed as W+

u,v/(W
+
u,v +W−u,v) where

W+
u,v is the sum of weights of positive edits between u and

v, while W−u,v is the sum of the complement-one values of
the weights of negative edits. This is explained to balance
the numerical contributions given by positive interactions
(i.e., edge weights above 0.5) vs. negative interactions
(edge weights below 0.5). For example, suppose node u
has one positive interaction with node v with weight 0.9
and five negative interactions all with weight 0.02: without
complementing the negative interaction weights, the trust
score of u to v would be 0.9/(0.9 + 5 ∗ 0.02) = 0.9 (i.e.,
high trust, which is counterintuitive); otherwise, it would be
0.9/(0.9+5∗0.98) = 0.155, which is more reasonable since
it likely denotes a distrust relation rather than a trust one.

We chose the classic TidalTrust [7] (TT in short) as a
representative local-trust inference method. This is designed
to exploit the topological information in an input trust
network for predicting a trust score for each pair of nodes
that do not have a direct connection. The choice of selecting
the shortest path derives from the hypothesis that reliability

of trust values progressively decays proportionally to their
distance from the source node. The trust between non-
adjacent nodes is inferred by considering only shortest paths
through trusted neighbors. The trust from a source to a
destination node is calculated by calling a recursive trust
function on the trusted neighbors, which terminates when
the destination is reached. When the trust is back propagated
to the source, it is averaged and rounded among the different
trusted paths. Also, a path-pruning threshold is set to the
maximum of the lowest trust values in each individual path
from source to destination node. We used TT as follows:
From the trust network obtained through DDB, repeatedly
remove one edge at a time from the baseline network, then
apply TT to compute its trust score, until all edges in the
network are examined.

VI. RESULTS
We present our main experimental results for each of the
ground-truth-based evaluation stages (Sects. VI-A–VI-B).
In this regard, note that a major goal of our experimental
analysis is the assessment of TNI by varying the setting of
its main parameters; nonetheless, unless otherwise specified,
we will present results that correspond to default settings
for parameters δ (0.1), α (0.5), k (|Ov|/2, for any v), nmax

(100), and Jaccard similarity as topological overlap function.
In Sect. VI-C, we also discuss TNI efficiency aspects.
Finally, in Sect. VI-D, we summarize main experimental
findings.

A. TRUST-CLASS GROUND-TRUTH EVALUATION
Trust score distributions. For each entity (i.e., user in the
input temporal network), we analyzed the distribution of its
trust values among entities in the same ground-truth class
and in the other classes. More specifically, we analyzed the
boxplots of the distributions of ΩΓ(v) and Ω¬Γ(v) values,
over all entities in a network, for various sampling strategies
and varying α. For the sake of presentation, we report here
results corresponding to the default, balanced setting of α
(i.e., 0.5) in Fig. 2, while results for α ∈ {0.15, 0.85} can
be found in Appendix.

One important remark that supports the effectiveness of
TNI is that, on average, an entity v tends to assign higher
trust scores to entities in its ground-truth class (Γ(v)) than
entities outside. This particularly holds, reagrdless of α
in non-noisy networks (i.e., DKpol, DKpol-c, DKpol-exp)
and for strategies CO and SE, which allow much clearer
separation of the two distributions than the RW strategy. By
contrast, it is worth emphasizing that the competitors can
have an opposite trend, as in DKpol-exp, or even an overly
positive-bias, as in WikiEdit.

Moreover, considering the effect on the distributions by
varying α (Figs. 5–6, in Appendix), while negligible dif-
ferences can be observed between the corresponding cases,
for each network and method, we also found no monotonic
behavior in the distribution overlap by progressively varying
α; for instance, the default value of 0.5 (cf. Fig. 2b) ensures
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FIGURE 2: Trust-class ground-truth evaluation: Boxplots of the distributions of the average intra-class trust (ΩΓ(v)) and of
the average extra-class trust (Ω¬Γ(v)) values

TABLE 4: Trust-class ground-truth evaluation: Global bpref results. Bold text refers to the best values per dataset

TNI with ≺CO TNI with ≺SE TNI with ≺RW DDB TidalTrust
α=0.85 α=0.5 α=0.15 α=0.85 α=0.5 α=0.15 α=0.85 α=0.5 α=0.15

DKpol 0.531 0.532 0.493 0.484 0.484 0.499 0.418 0.423 0.401 0.248 0.406
DKpol-c 0.576 0.635 0.579 0.603 0.644 0.582 0.438 0.456 0.456 0.566 0.463
DKpol-exp 0.433 0.436 0.522 0.177 0.194 0.209 0.155 0.168 0.178 0.234 0.266
DKpol-exp-c 0.445 0.548 0.522 0.195 0.210 0.213 0.163 0.175 0.174 0.239 0.272
WikiEdit 0.524 0.402 0.391 0.554 0.46 0.441 0.443 0.386 0.386 0.392 0.293
WikiEdit-exp 0.378 0.354 0.352 0.1 0.1 0.1 0.142 0.138 0.14 0.02 0.286

better separation between the distribution boxplots than the
other settings of α in DKpol-c, whereas for a network like
WikiEdit-exp which was built on content-based collaborative
editing, α = 0.85 (cf. Fig. 5d) might be preferred to other
settings.

Bpref analysis. Table 4 shows bpref results obtained by
different variants of TNI and by competing methods. Several
remarks stand out. First, concerning the sampling strategies,
CO and SE models generally lead to better performance of
TNI than in the RW case, on every dataset and regardless
of the α setting. In particular, CO improves upon SE
especially in the noisy (i.e., expanded) networks, while SE
prevails over CO in content-based networks (DKpol-c and
WikiEdit). Second, TNI performance always increases when
the network information is combined with content informa-
tion to determine the preference probabilities (i.e., DKpol-c
vs. DKpol, and DKpol-exp-c vs. DKpol-exp), regardless of
the sampling strategy and α setting. Third, concerning the
impact of parameter α, the balanced setting (i.e., α = 0.5)
leads to performance results that are comparable or better
than for α = 0.85 in the DKpol networks, while an opposite
tendency is observed for WikiEdit networks, which are
indeed more content-oriented than DKpol ones; analogously,
α = 0.15 may behave better than the balanced setting on
noisy structure-oriented networks like DKpol-exp. Fourth,
TNI significantly outperforms the competitor methods, at
least when equipped with the CO strategy. DDB can behave
better than TT (DKpol-c and WikiEdit), but the opposite
holds on the noisy networks: this happens since TT is able
to exploit the rich connectivity of expanded networks for
inferring new trust links, while DDB considers the local
interactions only.

Effect of k and nmax. Besides investigating the roles
of the sampling stategy and of the α parameter, we also

evaluated the impact of k and nmax on the TNI performance.
To this end, we devised two stages: i) we varied nmax from
the default 100 up to 500, while keeping k fixed to the
default of half of the trust-context size, and ii) we varied k
for different percentages of the trust-context size, with nmax

fixed to 100. α was set to the default 0.5.
Figure 3 shows bpref results obtained for various sam-

pling strategies. At first sight, it stands out that, in both
evaluation stages and for each network dataset, the relative
differences between the sampling strategies follow the same
trend when varying k (Fig. 3a-d) and nmax (Fig. 3e-h),
respectively. Also, our choice of default settings of the
two parameters turns out to correspond to bref results
that are very close to the performance peaks. Overall, this
not only suggests relative robustness of TNI to variations
of k and nmax, but also that the computational burden
due to an increase of the values of the parameters can be
avoided, since no particularly significant performance gain
is guaranteed above specific values (i.e., default values).

Moreover, as already shown in Table 4, CO turns out to
be the winner strategy for noisy networks (i.e., DKpol-exp-c,
WikiEdit-exp), while SE prevails on other situations.

B. TRUST-NETWORK GROUND-TRUTH EVALUATION
For the second stage of evaluation, we filtered out the edges
with trust scores below a certain threshold, which was set
for each entity v as the 25-th percentile of the trust score
of entities linked to v. Then, we derived an unweighted
trust network to enable comparison with the unweighted
reference networks of the CiaoDVD dataset.

Table 5 shows precision, recall and F1-score values w.r.t.
the ground-truth trust network, for TNI (equipped with dif-
ferent sampling strategies and varying α) and competitors.
Looking at the table, we observe that the best scores are
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FIGURE 3: Trust-class ground-truth evaluation: Global bpref , (a)-(d) varying k (with fixed nmax) and (e)-(h) varying nmax

(with fixed k)

TABLE 5: Trust-network ground-truth evaluation: Precision, recall and F1-score results. Bold text refers to the best values
per dataset, for each criterion

Precision Recall F1-score
≺CO ≺SE ≺RW DDB TT ≺CO ≺SE ≺RW DDB TT ≺CO ≺SE ≺RW DDB TT

CiaoDVD
α = 0.85 0.231 0.235 0.236

0.232 0.231
0.804 0.842 0.849

0.796 0.812
0.359 0.367 0.369

0.359 0.36α = 0.5 0.231 0.231 0.236 0.804 0.822 0.85 0.358 0.36 0.37
α = 0.15 0.22 0.231 0.234 0.743 0.82 0.844 0.34 0.36 0.367

CiaoDVD-c
α = 0.85 0.239 0.238 0.238

0.236 0.226
0.838 0.847 0.87

0.807 0.793
0.372 0.372 0.374

0.365 0.352α = 0.5 0.233 0.237 0.238 0.826 0.859 0.899 0.363 0.371 0.377
α = 0.15 0.228 0.237 0.234 0.828 0.871 0.899 0.358 0.372 0.372

always obtained by TNI, mostly with the RW strategy;
this shows higher recall than the other strategies, while
all three lead to similar performance in terms of precision
and F1-score. Concerning precision in particular, the gap
between TNI and the competitors is relatively small, and all
achieve quite low values in both CiaoDVD networks. This
is explained since the ground-truth network of CiaoDVD
indeed was not derived from interaction data (i.e., a user
may trust another one without interacting with her/him),
thus the inferred trust network may not be in accord with
the ground-truth knowledge. Mid-high values of recall are
instead obtained on both networks, with the RW strategy
outperforming SE and CO. In particular, TNI with RW or
SE (along with CO in CiaoDVD-c) outperforms the two
competitors, despite their bias in producing high trust scores
for most edges.

C. EFFICIENCY EVALUATION

Table 6 shows the execution times of TNI, broken down into
the procedures PDPP and PBR, using the default settings.
It can be noted that, regardless of the particular network
and strategy, most of the total running time is due to the
PDPP procedure. Moreover, the RW strategy tends to yield
better time performance of TNI, though of the same order
of magnitude as for the other two strategies.

We also analyzed the time efficiency of TNI by varying
the maximum number of samplings nmax from 100 to 500.
Figure 4 shows time performances on DKpol and WikiEdit
networks.2 In accord with the computational complexity
analysis (Sect. IV-C), the execution time for SE and CO
strategies grows linearly with nmax. By contrast, the RW
execution time grows much slower or even negligibly: this
is explained since the value of nmax is checked by the RW
strategy to decide if a pair of options does not need to be
sampled anymore (Line 4 in Algorithm 4), and this leads
the random walk to convergence faster than the other two
strategies.

D. DISCUSSION
We coped with the task of assessing our proposed TNI
by designing ground-truth-based stages of evaluation. We
believe this design is remarkable as it allowed us to define
an all-inclusive approach to the exploitation of ground-
truth knowledge for evaluation purposes. Our stages of
evaluation of TNI have indeed been defined upon either
a notion of trust-class (i.e., cohesive group of mutually-
trusted users) or on the availability of a reference trust-
network for the input dynamic network. As a consequence,

2Platform Linux (Mint 18), with 2.6 GHz Intel Core i7-4720HQ, 16GB
RAM
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TABLE 6: TNI execution times (in seconds)

TNI with ≺CO TNI with ≺SE TNI with ≺RW
PDPP PBR total PDPP PBR total PDPP PBR total

DKpol 0.93 0.24 1.17 0.92 0.35 1.27 0.89 0.05 0.94
DKpol-c 0.98 0.2 1.18 1.02 0.26 1.28 1.01 0.06 1.07
DKpol-exp 420.25 44.32 464.57 420.05 66.44 486.49 420.63 1.32 421.95
DKpol-exp-c 409.75 52.38 462.13 410.83 86.52 497.35 423.07 2.4 425.47
WikiEdit 4.02 2.32 6.34 4.74 2.4 7.138 4.77 0.32 5.09
WikiEdit-exp 4172.50 110.8 4283.30 4173.96 230.24 4404.20 4176.44 12.32 4188.76
CiaoDVD 38452.02 310.60 38762.62 38454.04 521.52 38975.56 38501.02 43.48 38544.50
CiaoDVD-c 38545.02 322.10 38867.12 38540.53 543.85 39084.38 38543.52 53.48 38597

100 200 300 400 500
nmax

0

5×103

10×103

15×103

20×103

25×103

tim
e 

(m
s)

CO

SE

RW

100 200 300 400 500
nmax

0

1×106

2×106

3×106

4×106

5×106

6×106

tim
e 

(m
s)

CO

SE

RW

100 200 300 400 500
nmax

0

50×103

100×103

150×103

tim
e 

(m
s)

CO

SE

RW

100 200 300 400 500
nmax

0

20×106

40×106

60×106

tim
e 

(m
s)

CO

SE

RW

(a) DKpol-c (b) DKpol-exp-c (c) WikiEdit (d) WikiEdit-exp

FIGURE 4: TNI runtime performance by varying nmax

we identified three representative application domains for
TNI, with corresponding case studies that refer to relevant
scenarios in network analysis.

Upon these premises, experimental results have revealed
important findings about the meaningfulness and effective-
ness of our proposed method. TNI is capable of inferring a
trust network where each entity (i.e., user) observed in the
input time-evolving network is associated with higher trust
scores to entities in its ground-truth class than to entities
of other classes. By contrast, competing methods fail in
having this behavior, showing sometimes an opposite trend
or even an overly positive-bias (i.e., much more trust links
than expected).

Despite having a number of parameters, TNI has shown
to be surprisingly robust to their variation; particularly, the
sampling strategies (i.e., ranking models) follow similar
trends when varying the top-k trusted options for every
target entity, and the number of samplings for each pairwise
preference probability distribution (nmax). Also, using a
balanced setting for α (i.e., the smoothing parameter that
controls the contributions of structural and content infor-
mation from the input network to determine the preference
probabilities) has shown to be an appropriate default choice.

From an efficiency viewpoint, TNI running time grows
linearly with the number of samplings. Overall, considering
a trade-off between impact on the efficiency and impact on
effectiveness of TNI, the sampling strategy based on the
Copeland’s ranking model turned out to be the best choice.

VII. CONCLUSIONS
We introduced the Trust Network Inference problem and
proposed a preference-learning-based approach to solve it.
Our approach can be regarded as key-enabling for any
application that needs to build a trust network associated

with a social environment from user interactions observed
over time, in order to exploit the inferred trust relatioships
in a variety of mining tasks.

Several aspects in our approach are worthy to be further
investigated. Different definitions of trust-context and of
structural/content affinity functions could easily be inte-
grated into our proposed TNI framework; for instance, as
we mentioned earlier in the paper, the trust-context model
could be defined according to various topological structures,
such as expanded ego-networks or community structures.
Another aspect of interest is to extend our method to build
a trust network incrementally in online tasks, i.e., inferring
and maintaining/updating a trust network over a stream of
interaction networks.

To encourage further development of our work, we make
available to the community the preprocessed data used in
the evaluation and the source code of TNI, at:
http://people.dimes.unical.it/andreatagarelli/ tni/ .
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APPENDIX

DETAILS OF THE RANDOM-WALK-BASED SAMPLING
STRATEGY

Random walk ranking first requires a left-stochastic version
S̄ = [sij ]N×N of the matrix Ȳ, such that si,j =

¯yi,j∑N
l=1 ¯yl,j

.
Given confidence intervals for the entries of matrix Ȳ,
denoted with matrix B = [ci,j ]N×N , confidence intervals
for elements in S̄, denoted with matrix B̃ = [c̃i,j ]N×N , are
computed (by applying a result in [23]) as:

c̃ij =
N

3
max

k
ck,j

∑
l

ȳl,j (5)

Note that the elements of a particular column of B̃ are
equal to each other, thus ‖B̃‖1 = maxj

∑
i |c̃i,j | =

N2

3 maxk,j ck,j
∑

l ȳl,j .
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FIGURE 5: Trust-class ground-truth evaluation: Boxplots
of the distributions of the average intra-class trust (ΩΓ(v))
and of the average extra-class trust (Ω¬Γ(v)) values, with
α = 0.85
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FIGURE 6: Trust-class ground-truth evaluation: Boxplots
of the distributions of the average intra-class trust (ΩΓ(v))
and of the average extra-class trust (Ω¬Γ(v)) values, with
α = 0.15

Let π = (π1, . . . , πN ) and π̄ = (π̄1, . . . , π̄N ) be the
stationary distributions of S and S̄ respectively. Then, by
applying the result of [24], it follows that:

‖π − π̄‖max ≤ ‖B̃‖1‖Ā∗‖max (6)
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where Ā∗ = [ā∗ij ]N×N = (I − S̄ + 1πT )−1 − 1πT .
Notice that, in order to obtain better estimates of the
preferences, the bound in Eq. 6 suggests the minimiza-
tion of ‖B̃‖1 which can be performed by sampling pairs
(i, j) = argmaxi,j ci,j

∑
l ȳl,j . At each time, the pairs of

options that satisfy this condition are maintained as set of
active options to be sampled next.

ADDITIONAL RESULTS FOR SECT.VI-A
Figures 5 and 6 show the boxplots of the distributions of
the average intra-class trust and of the average extra-class
trust, with α = 0.85 and α = 0.15, respectively.
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