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Abstract

Signed graphs are a model to depict friendly (positive) or antagonistic (negative)
interactions (edges) among users (nodes). 2-Polarized-Communities (2pc) is
a well-established combinatorial-optimization problem whose goal is to find two
polarized communities from a signed graph, i.e., two subsets of nodes (disjoint,
but not necessarily covering the entire node set) which exhibit a high number of
both intra-community positive edges and negative inter-community edges. The
state of the art in 2pc suffers from the limitations that (i) existing methods rely
on a single (optimal) solution to a continuous relaxation of the problem in order
to produce the ultimate discrete solution via rounding, and (ii) 2pc objective
function comes with no control on size balance among communities.
In this paper, we provide advances to the 2pc problem by addressing both these
limitations, with a twofold contribution. First, we devise a novel neural approach
that allows for soundly and elegantly explore a variety of suboptimal solutions
to the relaxed 2pc problem, so as to pick the one that leads to the best discrete
solution after rounding. Second, we introduce a generalization of 2pc objective
function – termed γ-polarity – which fosters size balance among communities,
and we incorporate it into the proposed machine-learning framework.
Extensive experiments attest high accuracy of our approach, its superiority over
the state of the art, and capability of function γ-polarity to discover high-quality
size-balanced communities.

Keywords: polarization, signed graphs, neural networks

1



1 Introduction

The widespread use of modern social media has created a huge amount of online
social interactions, fostered the formation of communities (e.g., [1–3]) and facilitating
discussions about a variety of topics. Users establish positive relationships such as
friendships, agreements, and supports, as well as negative relationships such as foes,
disagreements, and distrusts. The existence of such mixed interactions has led to an
ever-growing polarization phenomenon, i.e., a division of the set of users into groups
with opposite view on controversial topics (e.g., politics, religion, sport).

In the past few years, we have witnessed a plethora of studies about polarization
on social media [4–6]. Polarization is often distinguished in ideological and affective
polarization [7]: the former refers to increased ideological divergence and reduced dia-
logue among individuals with differing views, whereas the latter focuses on affective
attitude that individuals show toward others based on their opinions [5]. Nonetheless,
other approaches to the study of polarization discard a particular qualification of the
term polarization, while adopting a graph-theoretic setting where the goal is to dis-
cover polarized communities in signed graphs [8, 9]. In this work, we follow the latter
line of studies. Remarkably, a key novelty in our work is the exploitation of machine
learning, particularly neural network models, for discovering a polarization structure.

Polarization in signed graphs. Signed graphs are graphs whose edges are assigned
either a positive or a negative label, denoting whether the interaction depicted by an
edge is friendly or antagonistic, respectively [10]. Signed graphs are used to model a
variety of data and study numerous (social) phenomena, such as emergence of polarized
discussions in social media, or analysis of trust/distrust in review platforms [11–14].
Bonchi et al. [8] employ signed graphs to define the problem of 2-Polarized-
Communities (for short, 2pc), which requires finding two subsets of nodes, generally
referred to as communities, of the input signed graph such that there are (R1) mostly
positive edges within each community and (R2) mostly negative edges between the
two communities, and (R3) the subgraph induced by these two communities is as much
dense as possible; for instance, assuming that positive (resp. negative) edges denote
agreement (resp. disagreement) of social media users w.r.t. a given context of debate,
identifying the two polarized communities correspond to detecting two groups of users,
where users of the same group mostly agree with each other, while having divergent
opinions with respect to the users of the other group. Also, the two communities are
required to be non-overlapping, but they do not necessarily need to cover the entire
node set. The rationale of the latter is to comply the most with real-world situations,
where polarized communities are concealed within a body of other graph nodes which
do not (yet) have a strongly formed opinion, and, as such, they are neutral in terms
of polarization.

Motivation: limitations of the state of the art in 2pc. The above R1–R3
requirements for the 2pc problem are jointly pursued by maximizing a single objective
function, termed polarity. Bonchi et al. [8] show that maximizing polarity is NP-hard,
but also that a continuous relaxation of that problem is solvable in polynomial time.
They exploit this finding to devise algorithms which consist in properly rounding (i.e.,
discretizing) the optimal solution of the relaxed problem.
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Fig. 1 Example signed graph, with solid lines and red dashed lines corresponding to positive and
negative edges, respectively. The optimal solution of the relaxed 2pc problem yields, after rounding,
one community containing node A only and the other community containing all the remaining nodes.
However, the same rounding strategy applied to a suboptimal solution of the relaxed problem leads
to node A and nodes D-E forming the two communities, while nodes B-C are detected as neutral:
this is not only a more likely realistic configuration (due to the roles played by nodes B-C) than the
communities derived from the optimal solution, but it also turns out to have higher polarity than the
latter. For more details on this example, see Example 1 in Section 3.

Limitation 1. Despite Bonchi et al.’s algorithms are principled and rather effective,
they suffer from the fact that deriving a solution to 2pc starting from the optimal solu-
tion of the relaxed problem may be limiting in terms of polarity. In fact, as illustrated
in Figure 1, suboptimal solutions to the relaxed problem can lead to better solutions
to 2pc after rounding.

Limitation 2. The polarity function does not require or foster the detection of size-
balanced communities. Indeed, maximizing polarity can easily lead to degenerate
solutions with a single sufficiently large community and another (almost) empty com-
munity, even if the input signed graph does contain “natural” polarized communities
that are both non-empty and possibly of comparable size. Several types of social envi-
ronments, from social media platforms to online forums, from political systems to
scientific communities, can benefit from identifying and maintaining balanced polar-
ized communities. By ensuring that communities are diverse while still containing
balanced viewpoints, constructive debates can be facilitated, critical thinking can be
encouraged, and the individuals’ perspectives can be broadened, thus reducing echo
chambers and mitigating the spread of misinformation. Also, companies involved in
market research and product development can benefit from gathering insights from
diverse consumer groups balanced in size, and ultimately better understand market
preferences and anticipate consumer trends. Therefore, there is a need for methods
that can detect balanced polarized communities. In this respect, turning back to exam-
ple of Figure 1, the assignment of A to one community, D-E to the other community,
and B-C as neutral, is also much more balanced than the one derived from the optimal
relaxed-solution, where node A forms its own community, and all the other nodes are
assigned to the other community.
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The above example also highlights the need for detecting fine-grained polarization
phenomena, i.e., polarized communities that may not be apparent in terms of node
size or amount of connections involved therein. This is in fact essential to recognize
minorities in polarization, which in turn might correspond to harmful situations like
isolation, where a small group of individuals are marginalized or isolated by a larger,
cohesive group; later in this paper, we will provide an example of such polarization
setting.

Contributions. In this paper, we advance the state of the art in the 2pc prob-
lem by properly addressing the above limitations. Specifically, we provide a twofold
contribution.

First, targeting Limitation 1, we devise a novel machine-learning approach that
allows for soundly and effectively exploring a variety of suboptimal solutions to the
relaxed problem, so as to ultimately select the one that leads to the best discrete
solution to 2pc after rounding.

Second, to overcome Limitation 2, we devise a generalization of the polarity func-
tion, named γ-polarity. When optimizing standard polarity, in fact, 2pc solutions tend
to produce strongly imbalanced polarized communities, especially when dealing with
large graphs. Our proposed γ-polarity is designed to produce polarized communities
that, depending on the setting of γ, can be either more balanced or larger than those
yielded by standard polarity.

The proposed approach leverages a neural-network -based framework, whose core
component is a signed graph neural network (GNN) model, to learn continuous vector
representations of the input nodes, for the task of assigning each node a real-valued
score between -1 and 1. Such a score is ultimately rounded onto {−1, 0, 1}, so as
to determine whether the corresponding node is part of one of the two communities
(−1 or 1), or is neutral (0). To this purpose, our neural framework is optimized via
a loss corresponding to the relaxed polarization function, coupled with a suitable
regularization term.

Rationale and benefits of our proposal are as follows:
(1) A neural approach is well-suited for 2pc due to the compatibility of continuous

relaxation of 2pc with neural network differentiability. By setting the loss function to
the relaxed 2pc objective and performing rounding after each learning step, we bridge
the gap between discrete constraints of the underlying combinatorial-optimization
problem and the inherently continuous mathematical framework of neural networks.
Also, both input and output of (relaxed) 2pc are naturally handled by neural-network
building blocks too: the input graph by a signed GNN, and the output [−1, 1] score by
a tanh activation function. Furthermore, external information associated with nodes
can easily be integrated into our framework, since GNNs are designed to initialize the
hidden node representations (embeddings) with any available node features.

(2) While simple, our approach is backed by solid machine-learning fundamentals,
which make it principled and sound. In fact, training our neural framework via stan-
dard gradient descent provides an elegant solution to the aforementioned requirement
of exploring a variety of suboptimal solutions to relaxed 2pc. Every epoch of training
of our framework ends up with a rounding which produces a discrete 2pc solution,
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where a proper loss regularization term is introduced to enforce the continuous scores
to be closer to discrete {−1, 0, 1} values.

(3)Our framework is lightweight, yet highly versatile and modular, facilitating easy
maintenance and updates to keep pace with the latest GNN models and deep learning
advancements. Future improvements, like enhanced signed GNNs, can be seamlessly
integrated by modifying a single building block. Additionally, our framework allows
for seamlessly incorporating additional requirements on the yielded solutions, such as
fostering size balance, as we discuss next.

(4) We effectively address non-size-balanced communities by maximizing γ-
polarity, a generalization of standard polarity, using it as a loss in our neural
framework. This links our second main contribution (γ-polarity) with our first (neural
approach to 2pc).

(5) Our proposal offers multiple benefits to the research community. It represents
the first machine-learning approach to 2pc, which opens the door to further research
and improvement. The same applies to γ-polarity, which warrants additional explo-
ration from a combinatorial optimization perspective. Moreover, our work can serve
as inspiration for other combinatorial optimization problems, which share the com-
mon trait with 2pc that suboptimal relaxed solutions may lead to improved rounded
solutions.

Summary and roadmap. Our main contributions in this work can be summarized
as follows:

• We tackle 2pc [8], i.e., the problem of discovering two polarized communities from
an input signed graph (Section 2), and define a novel neural-network-based approach
to address it (Section 3).

• We introduce a generalization of 2pc’s objective function, termed γ-polarity, which
favors size balance among communities, and show how to optimize it within the
proposed neural framework (Section 4).

• We provide extensive experiments on a large variety of real-world and synthetic
signed graphs (Section 5). Results (Section 6) attest high accuracy of our approach,
its superiority over the state of the art, and the effectiveness of γ-polarity in
detecting balanced communities.

Section 7 concludes the paper and discusses future work.

2 Preliminaries and Background

Let G = (V,E+, E−) be an undirected signed graph, where V is a set of nodes, and
E+, E− ⊆ V × V , E+ ∩ E− = ∅, are sets of positive and negative edges, respectively.
We assume an arbitrary order over V , such that nodes are assigned a unique integer ID
within {1, . . . , |V |}. With a little abuse of notation, we interchangeably refer to u ∈ V
as both the node u itself and the u-th node in the order. This keeps vector/matrix
notations simpler. A ∈ {−1, 0, 1}|V |×|V | is the signed adjacency matrix of G, defined
as A[u, v] = 1 if (u, v) ∈ E+, A[u, v] = −1 if (u, v) ∈ E−, and A[u, v] = 0 otherwise.
Table 1 summarizes main notations used throughout this paper.
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Table 1 Main notations used in this paper.

notation description

G = (V,E+, E−) Signed graph (V: node set; E+: positive edge set; E−: negative edge set)

A signed adjacency matrix of G (A ∈ {−1, 0, 1}|V |×|V |)

S0, S1, S2
partition of V into polarized communities (S1, S2)

and neutral nodes (S0)

x ∈ {−1, 0, 1}|V | node-to-community assignment

z ∈ [−1, 1]|V | relaxed node-to-community assignment
p(x,A) polarity of x with respect to A (Def. 1)
pγ(x,A) γ-polarity of x with respect to A (Def. 2)

H0 ∈ R|V |×dI node feature matrix
fθ(·, ·) proposed neural-network model (Eq. (4))

L2PC(·, ·, ·) loss function used to train the proposed model (Eq. (5))
τ ∈ [0, 1] threshold for rounding a [−1, 1] value onto {−1, 0, 1}

Zi
set of threshold values derived from a continuous solution z

by approximating each z[u] at the i-th decimal digit
emax number of training epochs

2.1 Problem statement

We deal with the combinatorial-optimization problem of 2-Polarized-Communities
(for short, 2pc), originally defined by Bonchi et al. [8]. Given a signed graph G =
(V,E+, E−), 2pc finds two disjoint subsets S1, S2 ⊆ V of nodes such that (R1) there
are as many positive edges and as few negative edges as possible within S1 and within
S2; (R2) there are as many negative edges and as few positive edges as possible across
S1 and S2; and (R3) the subgraph induced by S1∪S2 is as dense as possible, according
to a density defined as the ratio between number of edges and number of nodes.

S1 and S2 are interpreted as polarized communities, i.e., groups of users (nodes)
who are cohesive in terms of both intra-group positive relationships (edges) and inter-
group negative relationships. Nodes included into neither S1 nor S2 – denoted S0 = V \
(S1∪S2) – form the set of neutral nodes. A partition {S0, S1, S2} of V can alternatively
be represented by a (column) vector x ∈ {−1, 0, 1}|V |, whose u-th coordinate is xu = 0
if u ∈ S0, xu = 1 if u ∈ S1, and xu = −1 if u ∈ S2.

The above R1–R3 requirements of 2pc are altogether encoded into a single
function, termed polarity :

Definition 1 (Polarity [8]). Given a vector x ∈ {−1, 0, 1}|V | and a matrix A ∈
{−1, 0, 1}|V |×|V |, the polarity p(x,A) of x with respect to A is defined as:

p(x,A) =
x⊤A x

x⊤x
. (1)

The numerator of p(·, ·) accounts for R1 and R2, while numerator and denominator
altogether model R3. In this regard, note that x⊤x = |S1 ∪ S2|.

The 2pc problem is formulated as follows:

Problem 1 (2pc [8]). Given a signed graph G = (V,E+, E−) with signed adjacency
matrix A, find

x∗ = argmax
x∈{−1,0,1}|V |

p(x,A).
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Relaxing node-to-community assignments to be continuous, i.e., ∈ [−1, 1], leads to
the following relaxed problem:

Problem 2 (2PC-relaxed [8]). Given a signed graph G = (V,E+, E−) with signed
adjacency matrix A, find

z∗ = argmax
z∈[−1,1]|V |

p(z,A),

where polarity p(z,A) = z⊤A z/z⊤z of a real-valued vector z ∈ [−1, 1]|V | is defined
the same as Definition 1.

State of the art in 2pc. 2pc is shown to be NP-hard, while 2PC-relaxed can be
solved in polynomial time by finding the eigenvector of the signed adjacency matrix
corresponding to the largest eigenvalue [8]. Bonchi et al. [8] exploit the latter to
devise two approximation algorithms for 2pc. The first (deterministic) algorithm sim-
ply rounds the optimal solution z∗ to 2PC-relaxed as x∗

u = sgn(z∗u), for all u ∈ V ,
where sgn(·) is the sign function. The second (randomized) algorithm sets, for all
u ∈ V , x∗

u = sgn(z∗u) if a Bernoulli experiment with success probability |z∗u| succeeds,
otherwise x∗

u = 0.
Tzeng et al. [9] extend 2pc to a k-community setting, where the goal is to find

k ≥ 2 node subsets, each of which is positively connected internally, and negatively
connected to the other subsets. Extending our approach to k > 2 communities is an
interesting direction for future work.

2.2 Related works

Besides polarization in signed graphs, which is the focus of our study, it is useful to
recall here methods that address related problems.

Representation learning for signed graphs. Graph representation learning is the
problem of assigning elements of a graph (e.g., nodes, edges, subgraphs) to numer-
ical vectors (embeddings) such that the similarity between those elements in the
graph corresponds to the similarity between their embeddings. The literature on
graph representation learning is vast, and includes learning approaches that are shal-
low, which optimize a certain criterion directly (e.g., d-hop reachability, random-walk
co-occurrence) and deep, i.e., based on graph neural networks (GNNs) [15, 16]. Repre-
sentation learning has been studied for signed graphs as well, including both undirected
methods [17–21] and directed methods [22, 23].

In this work, we regard signed graph representation learning as a building block of
the proposed framework. Note that our approach is versatile w.r.t. the choice of graph
representation learning model; however, creating a custom model for our specific task
is beyond the scope of this work.

Clustering signed graphs has also received attention in the literature [24–28]. How-
ever, those methods require every node to be part of an output cluster, hence they
are not designed to detect neutral nodes and left them out of evaluation, unlike our
approach. Also, signed graph clustering methods optimize criteria other than polarity.
Nonetheless, given their relative popularity yet relatedness with our problem, we shall
consider some of the most prominent methods in this category in our experimental
evaluation (cf. Section 5).
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Fig. 2 Overview of the proposed Neural2PC approach.

Other patterns in signed graphs.A number of works focus on extracting subgraphs
from signed graphs according to measures other than polarity. Ordozgoiti et al. [29]
aim at extracting a maximum-size subgraph which exhibits perfect balance [10], i.e.,
it can be partitioned into two sets of nodes such that there are only positive intra-
group edges and only negative inter-group edges. Despite the name, Ordozgoiti et al.’s
notion of balance has nothing to do with size balance of the groups of the output
subgraph. Also, the output groups may be arbitrarily sparse, as the goal is to maximize
the size of the output subgraph, no matter how dense it is. Xiao et al. [30] extract
subgraphs that maximize signed bipartiteness ratio. That measure mainly differs from
polarity as it enforces separation from the identified subgraphs to the rest of the
graph, rather than maximizing the density of the subgraphs. Also, Xiao et al. deal
with a local setting, where subgraphs are built by expanding two given sets of seed
nodes. Niu and Sariyüce [31] deal with dichotomy, a variant of polarity which is more
oriented to cohesiveness. Chu et al. [32] optimize oppositive cohesiveness, a measure
which considers cohesiveness in absolute terms, rather than in relation to the number
of nodes (it is not based on any notion of density). Please note that handling measures
other than polarity is beyond our scope.

Machine learning for combinatorial optimization leverages machine-learning
techniques to solve combinatorial-optimization problems [33, 34]. This research area
has focused on problems such as influence maximization [35], (graph) clustering [36,
37], community search and detection [38]. To the best of our knowledge, we are the
first to define a machine-learning approach to the 2pc problem.

3 Proposed approach: Neural2PC

Overview. Unlike existing methods [8] which find the optimal solution z∗ to 2PC-
relaxed (Problem 2) directly, we let a neural-network model fθ – with parameters
θ – produce a set {ze | e = 1, . . . , emax} of feasible solutions to 2PC-relaxed during
multiple epochs 1, . . . , emax of training. All the various ze are rounded in order to
yield feasible discrete solutions xe to 2pc. The best (in terms of polarity, Definition 1)
of such xe solutions is the definitive output.

The rationale of our neural approach is that it soundly allows for exploring a
variety of suboptimal solutions to 2PC-relaxed. As better shown in Example 1 at the
end of this section, this favors obtaining ultimate discrete solutions (after rounding)
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which exhibit higher polarity than the one derived by rounding the optimal solution
to 2PC-relaxed.

The ultimate objective in our approach is to find the model parameters θ that
maximize the polarity of the (relaxed) solutions computed via fθ (or, equivalently,
minimize a loss defined based on the negative polarity). Note that, as parameter
learning goes on, it is expected to get a deeper exploration of the space of relaxed
solutions, and hence a higher likelihood of getting an effective discrete solution after
rounding. This is confirmed by experimental evidence (Section 6).

The proposed neural approach is named Neural2PC. A graphical illustration of its
main components is shown in Figure 2. Next, we delve into its technical details.

Neural model. Our fθ model takes as input a signed graph G = (V,E+, E−), and a
matrix H0 ∈ R|V |×dI containing a dI -dimensional (real-valued) vector of features for
every node. Should such features be not available, H0 can be initialized by considering
structural information derived from G [17].

The first block of fθ is a (m-layer) signed GNN [17–21] sgnn(·), with parame-
ters θsgnn. sgnn(·) properly processes G’s topology and (possibly) node features H0,
and outputs a matrix H ∈ R|V |×dH = [hu ∈ RdH ]u∈V containing a hidden vector
representation hu of every node u ∈ V :

H = sgnn(G,H0). (2)

Then, vector representations produced by sgnn(·) feed into fully-connected neural-
network linear layers nn(·), with parameters θnn. Ultimately, a tanh activation function
is used to cast the (node-to-community assignment) scores for every node to the desired
[−1, 1] range (cf. Problem 2):

z = tanh(nn(H)). (3)

As a result, the overall fθ model is as follows:

fθ(G,H0) = tanh(nn(sgnn(G,H0))), (4)

and its parameters are θ = {θsgnn, θnn}.
Loss function. To optimize model parameters θ, we employ a loss function L2PC

defined as a combination of (the negative of) polarity p(·, ·) (Definition 1) and a proper
regularization term. The role of the latter is to enforce the model produce continuous
scores that are as close as possible to the ultimately desired discrete {−1, 0, 1} scores.
Specifically, we define the regularization term as the ||·||2 L2-norm of a vector ρ ∈ R|V |,
whose entries ρ[u], for all u ∈ V , are set to the difference min{|z[u]|, 1−|z[u]|} between
z[u] and the closest valid discrete score. The intuition is that minimizing the norm of
ρ (together with the other loss component) is expected to produce the desired effect
of yielding output continuous z scores not too far from the valid discrete ones.

All in all, given z = fθ(G,H0), the signed adjacency matrix A of G, and a hyper-
parameter λ ∈ R which properly weighs the importance of the regularization term,

9



Algorithm 1 Neural2PC

Input: Signed graph G = (V,E+, E−) with signed adjacency matrix A; node feature
matrix H0 ∈ R|V |×dI ; positive integer emax (number of epochs); positive real
number α (learning rate); real number λ (regularization hyperparameter)

Output: vector xbest ∈ {−1, 0, 1}|V |

1: xbest←0|V |, pbest←−∞, θ←parameter initialization
2: for e = 1, . . . , emax do
3: z← fθ(G,H0) {Eq. (4)}
4: x← round(z) {Eq. (6)}
5: if p(x,A) > pbest then
6: xbest ← x, pbest ← p(x,A)
7: end if
8: θ ← gradient-descent step over θ, with loss L2PC(z,A, λ) (Eq. (5)) and learning

rate α
9: end for

the L2PC loss function is defined as:

L2PC(z,A, λ) = − p(z,A)︸ ︷︷ ︸
polarity

+ λ ||ρ||22︸︷︷︸
regularization

(5)

Rounding. To round a continuous solution z ∈ [−1, 1]|V | onto a valid discrete x ∈
{−1, 0, 1}|V | solution to 2pc, we borrow the procedure adopted by Bonchi et al. [8].
Specifically, given a threshold τ ∈ [0, 1], for all u ∈ V , x[u] = sgn(z[u]) if |z[u]| ≥ τ ,
x[u] = 0 otherwise. In order to avoid sticking to a single τ , we follow [8], and try all
the thresholds τ ∈ {⌈z[u]⌋i | u ∈ V }, where ⌈·⌋i denotes approximating a real number
at the i-th decimal digit (we use i = 3). Formally:

Zi = {⌈z[u]⌋i | u ∈ V }.

∀u ∈ V : xτ [u] =

{
sgn(z[u]), if |z[u]| ≥ τ.

0, otherwise.

round(z) = argmax
x ∈ {xτ | τ∈Zi}

p(x,A). (6)

Algorithm. The algorithm we employ to produce a solution to 2pc simply consists
in optimizing the θ = {θsgnn, θnn} parameters of the fθ neural model end-to-end, via
standard gradient descent, for a number emax of training epochs. Specifically, the
algorithm alternates a forward phase, which produces a continuous solution z given
the current θ parameters, and a backward phase, where parameters θ are updated via
gradient descent, using the L2PC loss function, with a certain learning rate α. The
continuous solution z yielded in every epoch is rounded according to the round(·)
procedure described above. The discrete rounded solution with the highest polarity
score out of all the ones produced in the various epochs is ultimately output. The
reason of performing rounding and evaluating the polarity of the discrete solution in
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every epoch is that it is hard to know in advance the exact epoch leading to the best
discrete solution (see Section 6).

The proposed algorithm is outlined as Algorithm 1.

Motivating example. The following example shows the relevance of considering
suboptimal solutions to 2PC-relaxed, and validates the main motivation of our
neural approach.

Example 1. Consider again the toy signed graph in Figure 1. For the sake of vector
notation, let the order over node set {A,B,C,D,E} correspond to the lexicographic node
order, i.e., A corresponds to entry 1 in the vectors, B corresponds to entry 2, and
so on. z∗ = [0.282,−0.282,−0.282,−0.616,−0.616] is the optimal solution to 2PC-
relaxed on that example graph, and z = [0.213,−0.144,−0.144,−0.378,−0.378] is
a suboptimal solution (yielded by our neural approach). The polarity (Definition 1)
of z∗ and z is 2.372 and 2.363, respectively. Adopting the aforementioned rounding
(Equation (6)), z∗ leads to a discrete solution x1 = [1,−1,−1,−1,−1] (with threshold
τ = 0.282). Instead, z yields x2 = [1, 0, 0,−1,−1] (with τ = 0.213). The polarity of x2

is 2, which is higher than the polarity 1.6 of x1. Note also that x2 corresponds to the
optimal solution to 2pc on the example graph at hand.

Computational complexity. We discuss computational complexity aspects of our
proposed approach.

The temporal cost associated to the SGNN block depends on the particular neural-
network architecture. Nonetheless, assuming a sparse input signed graph with edge
set E = E+ ∪ E−, the overall time complexity of a SGNN model with m layers can
be regarded as bounded by O(m(|V |d2 + |E|d)), where d = max(dI , dH) (e.g., 64),
which reduces to O(|V |d2+ |E|d), since m typically corresponds to few units. The role
of the NN module is to transform the vector representations generated by the SGNN
module into node-to-community assignment scores. This transformation can straight-
forwardly be achieved through a simple multi-layer perceptron neural network, whose
computational cost is dominated by that of the SGNN module. The time complex-
ity of the rounding module is O(|Zi|(|V | + |E|)), as for each potential threshold in
Zi, the polarity of the rounded solution is computed in O(|V | + |E|) time to select
the optimal discrete solution. It is worth emphasizing that the cost of the round-
ing module constitutes the sole overhead introduced by us compared to the cost of
existing SGNN and NN modules embedded into our approach. By combining the two
aforementioned costs for emax epochs, the overall time complexity of Neural2PC is
O(emax((|Zi|+ d2)|V |+ (|Zi|+ d)|E|)).

Regarding the space complexity of our method, Neural2PC requires O(|V |) space
to store intermediate variables x and z (lines 3-4 in Algorithm 1). This cost is to be
considered as negligible compared to the space required to store intermediate node
representations for all nodes, which is O(|V |dH) since we compute and store a vector of
dH components (cf. Equation (2)) for each node v ∈ V . Moreover, the space complexity
of our method also depends on the space complexity of the specific SGNN and NN
modules, which in turn depends on the particular adopted models for such modules.
However, the number of model parameters associated with SGNN and NN is known
to be not directly affected by the size of the input graph, and for large graphs and
typical network settings, the dominant term indeed corresponds to the cost of storing
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the node representations, i.e., O(|V |dH). Consequently, the overall space complexity
of Neural2PC can be reasonably assumed to be O(|V |dH), attributed to the space
required to store the node representations.

4 Balancing the size of the communities

A well-known issue of the polarity measure (Definition 1) is that it favors solutions
with size-imbalanced output communities. It is not unlikely that this may even degen-
erate to solutions with one of the two communities overwhelming any other polarized
formation, with the result of having the second community empty [8]. Motivated by
this, here we devise a generalization of the polarity measure, dubbed γ-polarity, which,
by properly playing with its parameter γ, yields polarized communities more balanced
in size.

We define γ-polarity by properly modifying the denominator of the polarity mea-
sure, while keeping the numerator the same. Given a node-to-community assignment
vector x ∈ {−1, 0, 1}|V |, let s1 =

∑
u∈V,x[u]<0 |x[u]| and s2 =

∑
u∈V,x[u]>0 x[u] be

the size of the two communities, with smax = max{s1, s2}, smin = min{s1, s2}. The
denominator of the polarity measure is equal to the sum of the sizes of the two com-
munities, i.e., to x⊤x = smax+smin. Noticing that x⊤x = (smax−smin)+2smin, the
main intuition behind γ-polarity is to break x⊤x into such two terms (smax − smin)
and 2smin, and weigh differently – i.e., by γ > 0 – the (smax−smin) term correspond-
ing to the difference in size between the two communities. This leads to the following
formal definition of γ-polarity:

Definition 2 (γ-polarity). Given a vector x ∈ {−1, 0, 1}|V |, a matrix A ∈
{−1, 0, 1}|V |×|V |, and a real number γ > 0, the γ-polarity pγ(x, A) of x with respect
to A is defined as:

pγ(x,A) =
x⊤A x

(smax − smin) γ + 2 smin
. (7)

Note that, if γ > 1, the size-difference (smax − smin) term is amplified: thus,
maximizing pγ enforces such a term to be small, which corresponds to favoring size
balance among communities. The opposite happens if γ ∈ (0, 1). Instead, γ = 1 makes
γ-polarity boil down to standard polarity.

The relaxed counterpart of γ-polarity, for a given continuous vector z ∈ [−1, 1]|V |

is defined by simply replacing x with z in Equation (7) (including in the computation
of smax and smin). Relaxed γ-polarity can be incorporated in the proposed Neural2PC
approach by simply replacing the polarity term p(z,A) with a relaxed γ-polarity term
pγ(z,A) in the L2PC loss function (Equation (5)).

Example 2. Consider the example graph in Figure 3, where positive edges are
depicted by solid lines, while negative edges correspond to red dashed lines. Let
P1 = {{A,B,C,D}, {E,F,G,H}}, P2 = {{A,B,C,D}, {E,F,G,H,I,J,K,L}}, and P3 =
{∅, {E,F,G,H,I,J,K,L}} be three possible pairs of polarized communities.

The basic polarity (Definition 1) of P1, P2, and P3 is (15 × 2)/8 = 3.75, (22 ×
2)/12 = 3.67, and (15× 2)/8 = 3.75, respectively. Despite, P1 and P3 both exhibit the
highest polarity, P1 is much more size-balanced, thus intuitively preferable.
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Fig. 3 Example signed graph where, unlike basic polarity, γ-polarity detects effective polarized
communities that are also size-balanced (Example 2).

It is easy to see that using γ-polarity, with any γ > 1, instead of basic polarity
allows for recognizing P1 as better than P3 (as P1 and P3 have the same γ-polarity
numerator, while the γ-polarity denominator for P3 would be higher than the one for
P1 for any γ > 1).

Detecting fine-grained polarization phenomena within signed networks is crucial,
being essential to recognize minorities in polarization which might correspond to
harmful situations like isolation, as illustrated in the following running example.

Example 3. Consider the example graph in Figure 4-(a), where positive edges are
depicted by solid lines, and negative edges correspond to dashed lines. The scenario
illustrated in the figure might be regarded as a case of isolation, wherein one node (A)
has a majority of conflicting relations with a clique (i.e., B, C, D, E), and only few
links with a lower number of nodes (i.e., F,G). Therefore, it is desirable to capture a
polarization solution wherein the clique is regarded as one group while node A forms
the other yet isolated group.

Existing methods fail to identify such a desired solution: indeed, given the inherent
bias of the polarity objective towards outputs favoring communities with imbalanced
sizes, both Eigen and R-Eigen yield {S1, ∅} = {{B, C, D, E, F, G}, ∅}. This also
corresponds to an intermediate solution provided by our proposed method equipped with
the γ−polarity objective (e.g., γ = 2.1) (cf. Figure 4-(b)), before finally producing the
desired output {S1, S2} = {{B, C, D, E}, {A}} at convergence (cf. Figure 4-(c)).

5 Experimental Methodology

Evaluation goals. We assessed accuracy of the proposed Neural2PC (Algorithm 1)
and competitors/baselines on (1) real datasets, and (2) synthetic datasets; (3) impact
of different signed GNNs when used as a module of Neural2PC; (4) runtimes of the con-
sidered methods; (5) effectiveness of the individual components of Neural2PC through
an ablation study; (6) effectiveness of the γ-polarity measure in yielding communities
that are both size-balanced and high-quality.

Real datasets. We selected publicly-available real-world signed graphs, whose char-
acteristics are summarized in Table 2. Bitcoin and Epinions are the trust-distrust
network of users of the Bitcoin OTC trading platform and the Epinions social net-
work, respectively. Cloister contains the esteem/disesteem relations of monks living
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(a) Input signed graph

(b) Solution yielded by Neural2PC after the 1st training epoch

(c) Solution yielded by Neural2PC at convergence (11-th training epoch)

Fig. 4 Running example illustrating a scenario of node-isolation detection (Example 3).

in a cloister in New England (USA). Congress reports (un/)favorable mentions of
politicians speaking in the US Congress. HTribes describes the alliances/enemies rela-
tionships of a tribe in New Guinea. Slashdot is a friend-foe network collected from the
Slashdot technology news site. TwitterRef collects the tweets about the Italian consti-
tutional referendum in 2016, and edge signs express whether two users have the same
stance or not. WikiCon contains positive/negative edit conflicts between the users of
the English Wikipedia.WikiEle collects the positive/negative votes for electing admins
in the English Wikipedia. WikiPol describes the signed interactions of users who have
edited the English Wikipedia pages about politics.
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Table 2 Main characteristics of real data used in our evaluation. E = E+ ∪ E−: overall edge set;
density: |E|/(|V |(|V | − 1)/2); deg+, deg−: avg of positive and negative node degrees, resp.; cc+,
cc−: #connected components in the subgraph induced by E+ and E−, resp.; cc: overall
#connected components.

dataset |V | |E| |E−|/|E| density deg+ deg− cc+ cc− cc

Bitcoin [39] 5 881 21 492 0.152 0.00124 6.2 1.11 355 4 344 4
Cloister [40] 18 125 0.552 0.81699 6.22 7.67 1 1 1
Congress [40] 219 521 0.205 0.02183 3.78 0.98 8 127 1
Epinions [39] 131 580 711 210 0.171 8e-05 8.97 1.84 23 366 90 846 5 568
HTribes [40] 16 58 0.5 0.48333 3.62 3.62 2 2 1
Slashdot [39] 82 140 500 481 0.239 0.00015 9.28 2.91 7427 46 991 1
TwitterRef [41] 10 884 251 406 0.051 0.00424 43.85 2.35 69 6 801 11
WikiCon [39] 116 717 2 026 646 0.628 0.0003 12.9 21.83 70 284 1 788 1 785
WikiEle [40] 7 115 100 693 0.221 0.00398 22.05 6.26 892 2 926 24
WikiPol [41] 138 587 715 883 0.123 7e-05 9.06 1.27 14 458 97 459 305

Table 3 Main characteristics of m-SSBM-generated network data used in our evaluation.
E = E+ ∪ E−: overall edge set; density: |E|/(|V |(|V | − 1)/2); deg+, deg−: avg of positive and
negative node degrees, respectively.

dataset |V | |E| |E−|/|E| density deg+ deg−

syn-η=0.0-n=250-nc=25 250 1225 0.51 0.03936 4.8 ± 9.6 5.0 ± 10.0
syn-η=0.1-n=250-nc=25 250 11503 0.502 0.36957 45.82 ± 8.18 46.21 ± 8.56
syn-η=0.2-n=250-nc=25 250 17803 0.498 0.57198 71.49 ± 8.12 70.94 ± 7.9
syn-η=0.3-n=250-nc=25 250 20688 0.5 0.66467 82.75 ± 7.73 82.75 ± 7.23
syn-η=0.4-n=250-nc=25 250 20151 0.505 0.64742 79.73 ± 7.32 81.48 ± 7.55
syn-η=0.5-n=250-nc=25 250 15994 0.494 0.51386 64.73 ± 7.5 63.22 ± 7.04
syn-η=0.6-n=250-nc=25 250 15801 0.502 0.50766 62.91 ± 6.96 63.5 ± 7.14
syn-η=0.0-n=500-nc=50 500 4950 0.505 0.03968 9.8 ± 19.6 10.0 ± 20.0
syn-η=0.1-n=500-nc=50 500 45557 0.498 0.36519 91.49 ± 14.51 90.74 ± 15.15
syn-η=0.2-n=500-nc=50 500 71688 0.5 0.57465 143.34 ± 11.77 143.42 ± 11.5
syn-η=0.3-n=500-nc=50 500 83360 0.5 0.66822 166.68 ± 11.18 166.76 ± 11.1
syn-η=0.4-n=500-nc=50 500 80755 0.502 0.64733 160.94 ± 10.99 162.08 ± 11.16
syn-η=0.5-n=500-nc=50 500 63682 0.498 0.51048 127.95 ± 10.57 126.78 ± 11.05
syn-η=0.6-n=500-nc=50 500 63194 0.503 0.50657 125.55 ± 10.03 127.22 ± 10.79
syn-η=0.0-n=1K-nc=100 1000 19900 0.503 0.03984 19.8 ± 39.6 20.0 ± 40.0
syn-η=0.1-n=1K-nc=100 1000 182117 0.501 0.3646 181.66 ± 26.47 182.58 ± 26.93
syn-η=0.2-n=1K-nc=100 1000 286637 0.5 0.57385 286.65 ± 19.19 286.62 ± 19.47
syn-η=0.3-n=1K-nc=100 1000 332555 0.499 0.66578 333.18 ± 16.37 331.93 ± 16.94
syn-η=0.4-n=1K-nc=100 1000 322424 0.501 0.64549 321.8 ± 15.9 323.05 ± 15.98
syn-η=0.5-n=1K-nc=100 1000 254789 0.5 0.51009 254.99 ± 17.44 254.59 ± 16.41
syn-η=0.6-n=1K-nc=100 1000 253394 0.499 0.5073 253.65 ± 16.05 253.14 ± 15.8
syn-η=0.0-n=2K-nc=200 2000 79800 0.501 0.03992 39.8 ± 79.6 40.0 ± 80.0
syn-η=0.1-n=2K-nc=200 2000 728584 0.5 0.36447 364.39 ± 51.16 364.19 ± 51.88
syn-η=0.2-n=2K-nc=200 2000 1147517 0.5 0.57405 573.67 ± 33.78 573.85 ± 34.57
syn-η=0.3-n=2K-nc=200 2000 1334724 0.5 0.6677 667.41 ± 25.78 667.31 ± 25.61
syn-η=0.4-n=2K-nc=200 2000 1291962 0.5 0.6463 646.21 ± 24.06 645.75 ± 24.32
syn-η=0.5-n=2K-nc=200 2000 1019626 0.499 0.51007 510.51 ± 27.66 509.12 ± 28.59
syn-η=0.6-n=2K-nc=200 2000 1014422 0.5 0.50746 507.56 ± 24.93 506.87 ± 25.52
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Synthetic datasets. We also employed synthetic signed graphs in order to test the
methods in recovering ground-truth polarized communities. We used modified signed
stochastic block model (m-SSBM) [9] as a generator. This model has three parameters,
namely the total number n of nodes, the size nc = |S1| = |S2| of a planted polarized
community (all have the same size) and a parameter η ∈ [0, 1] to control edge proba-
bilities: (i) an edge in the same group (resp. between two polarized groups) is drawn
as positive (resp. as negative), with probability 1− η, as negative (resp. as positive),
with probability η/2, and is not drawn with probability η/2; (ii) all other edges have
equal probability of min(η, 1/2) of being positive or negative. Note that the smaller
η, the lower the noise level. The case with no noise (η = 0) corresponds to the “per-
fect” structure (i.e., all nodes are disconnected except those linked within or across
polarized communities), while the polarized communities only emerge when η ≤ 2/3,
since for η > 2/3 the generated graph has more negative edges in the groups and more
positive edges between the groups.

We considered different synthetic graphs by varying number of nodes (n), commu-
nity size nc, and η ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. For each configuration, we generated
10 different graphs. Table 3 summarizes main characteristics (average statistics) of the
generated network data.

Competing methods. We compare our Neural2PC (Algorithm 1) to the state-of-
the-art methods for discovering polarized communities, as well as against non-trivial
baselines inspired by methods devised for different yet related problems.

We consider both the methods originally conceived by Bonchi et al. [8], namely
Eigen and its randomized R-Eigen counterpart, as our direct competing methods,
since they target the same optimization problem (2pc) we tackle in this work.

Like [8], we include Pivot too, a baseline inspired by a correlation clustering
algorithm [42]. For each node u ∈ V , Pivot identifies u and the nodes sharing a
positive edge with u as one cluster, and the nodes sharing a negative edge as the
other cluster. From the |V | possible solutions, it returns the one maximizing polarity.
We also consider Greedy [8], a method inspired by a 2-approximation algorithm for
densest subgraph [43]. It iteratively removes nodes to maximize the difference between
positive and negative adjacent edges until the graph is empty. At the end, it returns the
subgraph having the highest polarity among all produced subgraphs. Node-to-cluster
assignment is guided by the sign of the components of the eigenvector corresponding
to the largest eigenvalue of A.

Furthermore, we consider signed graph clustering algorithms BNC [24],
SPONGE [25] and SSSNet [26]. Since they all require the number k of output clus-
ters (communities), we denote them with BNC(k), SPONGE(k) and SSSNet(k),
respectively. As previously done in [9], we consider two variants of these competitors.
The first one consists in setting k = 2 and return the 2 detected clusters as polarized
communities. The second variant sets k = 3, and it treats the largest of the 3 detected
clusters as the group of neutral nodes, and return the 2 smallest clusters as polarized
communities.

Experimental setting. We instantiate the sgnn(·) block of our Neural2PC
framework with well-established signed GNNs, namely SGCN [17], SNEA [19],
SGDNET [18]. As for SGCN, we consider different variants by varying the neighbor
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aggregation operator in {mean, sum, attention}. We denote such variants SGCNmean,
SGCNsum and SGCNatt, respectively. Also, for any considered signed GNN, we add
the “-DR” suffix if the proposed loss regularization term is used (Equation (5)). The
absence of such a suffix means that λ was set to 0.

All signed GNN models, implemented using PyTorch Geometric and trained
on CPUs, share uniform settings with a node representation dimensionality dH of
64, number of layers m as 2, and default values for other parameters. Concerning
SGDNET, we set the number of latent groups to 3. Since no initial node-features are
available for the selected signed graphs, following previous works [17] we used the final
embedding of a signed spectral embedding model [27] as the input feature matrix,
with dI = 64. For each configuration of our method and SSSNet, model training
was carried out by the Adam optimizer, for emax = 300 epochs and by grid search-
ing the α learning rate from {0.01, 0.005, 0.001} and the λ regularization factor from
{0.1, 0.01, 0.001}. All reported measurements correspond to averages over 30 runs.
Details about the execution environment can be found in the Appendix .

6 Results

Neural2PC vs. competitors, real datasets. Table 4 reports the values of polarity
(Definition 1) achieved by all compared algorithms on all datasets, and the size of
the produced two communities. Concerning our Neural2PC, we only report the results
obtained by the best-performing (in terms of polarity) graph representation learning
method. As for the graph clustering methods (i.e., SPONGE(k), BNC(k) and SSS-
Net(k)), we also report the number of desired communities k ∈ {2, 3} which led to
the best results in terms of polarity.

As a first remark, our Neural2PC generally reveals to be the most competitive
method in terms of polarity. Note that the exceptions of Slashdot, WikiEle and
WikiPol datasets (where Greedy precedes Neural2PC) correspond, however, to a very
dense subgraph returned by Greedy as one of the two polarized communities, leaving
the second community totally empty, which is clearly undesired in practice. Con-
versely, our method is able to return both non-empty communities with high polarity
in WikiEle and WikiPol.

Among our competitors, Eigen and R-Eigen, who also address the 2pc problem,
both achieve strong polarity results. Eigen outperforms R-Eigen, and on the smallest
datasets, Congress and HTribes, our method matches Eigen’s solutions regardless
of the adopted GNN model. In general, however, our method performs better than
Eigen and R-Eigen.

Pivot overall performs poorly in terms of polarity. This can be explained since, in
identifying polarized groups by exploring local neighborhoods, its search space strongly
depends on the neighborhood structure of the nodes. Also, its detected communities
tend to be located around high-degree nodes but, in general, the pair of communities
with the highest polarity do not necessarily lie around the high-degree nodes.

Concerning the BNC and SPONGE methods, when k = 2, as expected, they
perform poorly since all neutral nodes are put in one of the two detected communities,
resulting in solutions with low polarity. In fact, the two methods often yield solutions
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Table 5 Edge-agreement ratio of the proposed Neural2PC method vs. competing
methods on real datasets.

dataset Eigen R-Eigen Pivot Greedy SPONGE BNC SSSNet Neural2PC

Bitcoin 0.95 0.95 0.99 0.96 1.0 0.86 0.98 0.95
Cloister 0.94 0.74 0.72 0.72 0.72 0.54 0.97 0.94
Congress 0.98 0.98 1.0 0.96 0.96 0.79 0.96 0.98
Epinions 0.95 0.94 1.0 1.0 0.83 0.83 0.99 1.0
HTribes 1.0 1.0 1.0 0.88 0.88 0.47 0.84 1.0
Slashdot 0.99 0.93 0.98 0.99 0.76 0.76 0.8 0.99
TwitterRef 0.99 0.99 0.99 1.0 1.0 0.8 0.95 0.99
WikiCon 0.95 0.94 0.94 0.966 1.0 0.37 0.84 0.95
WikiEle 0.93 0.91 0.88 0.93 0.78 0.78 0.8 0.92
WikiPol 0.96 0.95 0.97 0.97 0.88 0.88 0.89 0.96
avg 0.96 0.93 0.95 0.94 0.88 0.71 0.90 0.97

Table 6 Performance of the proposed Neural2PC vs. competing methods on synthetic
datasets, in terms of F1-score and polarity (Def. 1) as a function of the noise parameter η.

method criteria
η

0 0.1 0.2 0.3 0.4 0.5 0.6

Eigen
F1 1.0 .998 .998 .998 .995 .972 .307
pol. 199 168.04 140.31 110.5 81.44 50.02 35.52

R-Eigen
F1 1.0 .911 .861 .829 .755 .678 .309
pol. 199 144.23 112.96 87.55 61.98 39.4 30.67

Pivot
F1 .997 .584 .426 .338 .305 .28 .236
pol. 198 61.66 32.56 17.06 8.5 4.06 3.1

Greedy
F1 .667 .644 .621 .63 .605 .334 .264
pol. 99 79.79 62.64 50.76 38.77 30.31 28.86

SPONGE(k)
F1 1.0 1.0 .714 .714 .714 .551 .247
pol. 199 168.62 28.01 23.96 15.81 23.36 23.85
k 3 3 2 2 2 3 3

BNC(k)
F1 .5 .5 .5 .167 .167 .476 .374
pol. -0.2 -0.26 -0.75 1.86 -0.98 1.01 1.09
k 2 2 2 2 2 3 2

SSSNet(k)
F1 1.0 1.0 .99 .99 .976 .365 .267
pol. 199 168.62 140.2 109.97 74.99 34.83 26.89
k 3 3 3 3 3 2 3

Neural2PC
F1 1.0 1.0 1.0 1.0 .995 .997 .341
pol. 199 168.62 140.65 110.69 81.44 50.27 36.16

where one community is a large group likely including all neutral nodes, and the other
community consists of few nodes. Conversely, when k = 3, even if the methods can use
the spare cluster to put the neutral nodes, they both perform worse than the case k = 2
yielding solutions that are of extremely small size. The same consideration holds for the
SSSNet method, although to a less extent, as it performs better then SPONGE and
BNC. In any case, the three selected clustering methods are consistently outperformed
by our method.

We complement our evaluation by analyzing the edge-agreement ratio which mea-
sures the portion of edges in the solution that comply with the polarized structure,
i.e., the number of intra-community positive edges inside S1 and S2 plus the number of
inter-community negative edges, divided by all the edges in the subgraph induced by
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Table 7 Performance of the proposed Neural2PC on synthetic datasets with varying
number of nodes n and community sizes nc, in terms of F1-score, polarity (Def. 1) and
running time (in seconds) as a function of the noise parameter η.

n nc criteria
η

0 0.1 0.2 0.3 0.4 0.5 0.6

250 25
F1 1.0 1.0 1.0 1.0 0.658 0.361 0.196
pol. 49.0 41.52 36.28 29.882 22.365 18.688 18.022
time 10.7 35.3 52.6 49.6 64.6 67.5 69.9

500 50
F1 1.0 1.0 1.0 1.0 1.0 0.723 0.329
pol. 99.0 84.02 69.54 53.92 39.725 25.775 24.641
time 26.4 84.4 92.7 114.6 144.4 154.3 176.3

1000 100
F1 1.0 1.0 1.0 1.0 .995 .997 .341
pol. 199 168.62 140.65 110.69 81.44 50.27 36.16
time 58.6 212.6 285.9 351.6 400.0 407.8 557.8

2000 200
F1 1.0 1.0 1.0 1.0 1.0 1.0 0.889
pol. 399.0 337.845 278.76 220.485 160.105 98.566 39.589
time 123.7 555.7 621.8 686.5 783.6 835.4 963.6

S1 ∪ S2. Table 5 reports the edge-agreement ratio corresponding to the best-polarity
solutions (cf. Table 4). Overall, the edge-agreement ratio is consistently close or equal
to 1, especially for Neural2PC and Eigen, with an average edge-agreement ratio across
all datasets of 0.97 and 0.96, respectively. The remaining methods follow a simi-
lar, although weaker, trend: this means that the solutions have a coherent polarized
structure.

Neural2PC vs. competitors, synthetic datasets. Table 6 shows the F1-scores
and corresponding polarity scores averaged over the 10 synthetic graphs that were
generated for each configuration, by varying the noise parameter η while keeping fixed
the network size (n = 1000) and the number of communities (nc = 100). For our
method, we only report the results corresponding to the best-performing (in terms of
F1-score) signed GNN model, which was SGDNET for all the datasets and noise levels.

From the table, it is evident that our Neural2PC is very robust in handling an
increasing noise level, as it mostly outperforms all competitors both in terms of F1-
score and polarity. The only exception arises for η = 0.6, where BNC(2) yields a
slightly higher F1-score than Neural2PC, but the polarity of the solution yielded by
BNC(2) is 36× times lower, thus resulting in a low-quality solution – recall that
the m-SSBM model generates very noisy graphs for mid-high values of η, where the
ground-truth communities are “hidden” by the graph topology since there are many
intra-community negative edges and many inter-community positive edges. In such
cases, a higher polarity is a more reliable indicator for the quality of the discovered
solutions: indeed, it holds that the polarity score is consistent with the F1-score, i.e.,
high values for the polarity mostly correspond to high F1-scores.

In addition, as shown in Table 7, our Neural2PC keeps a similar behavior and is still
robust w.r.t. η for varying numbers of nodes and community sizes (cf. Table 3); again,
results correspond to averages over 10 synthetic networks, and the group of results in
the second last row coincide with those for Neural2PC reported in Table 6. Note that,
according to the definition of m-SSBM and its edge-formation rules based on η, it
should not come to our surprise how the impact of η in terms of polarity decrease-rate

20



Bitc
oin

Cloi
ste

r

Con
gr

es
s

Epinion
s

HTrib
es

Slas
hdot

Twitt
er

Ref

W
iki

Con

W
iki

Ele

W
iki

Pol
10−3

10−2

10−1

100

101

102

103

ru
nt

im
e

(s
ec

on
ds

)

Eigen

R-Eigen

Pivot

Greedy

SPONGE

BNC

SSSNet

Neural2PC

Fig. 5 Execution times (in seconds) of the proposed Neural2PC method vs. competing methods on
real-world network datasets.

tends to be higher on larger m-SSBM synthetic networks, given the increased amount
of noise introduced by η.

Impact of different signed GNNs on Neural2PC. We analyzed polarity and com-
munity size values corresponding to all the variants of our Neural2PC method based
on different signed GNN models (results are shown in the Appendix ).

Our experiments revealed that the polarity of the solutions provided by Neural2PC
does not significantly change across the various GNNs, which indicates robustness of
our approach in terms of one of its main components.

Execution times. Figure 5 shows the average time performance of the methods, over
the various runs; in theAppendix , Table B7 reports detailed information, particularly
for Neural2PC we show details about the total running time and, in brackets, the
time discarding the rounding steps (i.e., by discarding the cumulative time spent in
executing the step at Line 4 of Algorithm 1 over all the epochs).

As expected, the learning-based methods, i.e., SSSNet and our Neural2PC, exhibit
the highest running times, which is clearly affected by their number of epochs
(emax = 300). Importantly, we remark that the reported running times of the Neu-
ral2PC method refer to its execution on a single CPU, without any parallelization.
However, Neural2PC, like any neural-network method, can easily benefit from ded-
icated hardware (e.g., GPUs) and parallelization, which can drastically improve its
execution time. Also, note that the time per epoch of Neural2PC is comparable to the
runtime of the fastest method(s).

Among the other methods, SPONGE performs the best, followed by BNC and
Eigen. R-Eigen is slightly worse than Eigen due to its randomized nature involving
sampling. Among the non-learning-based methods, Pivot and Greedy are inefficient
since they extract and evaluate |V | solutions.

In addition, remarks about scalability of Neural2PC can be drawn by looking at the
results on synthetic networks shown in Table 7: for any given value of η, the runtime
of Neural2PC increases linearly with the size of the network, which is in accord with
our previously discussed analysis of computation aspects.
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Table 8 Ablation study results for the proposed Neural2PC method.

dataset
Direct NN Neural2PC

pol. size time pol. size time pol. size time

Bitcoin 29.79 152;10 391 29.68 141;1 43.4 30.28 158;32 130
Cloister 7.43 9;3 2.3 7.45 8;3 5 7.45 8;3 5.5
Congress 6.59 29;24 30 6.62 30;23 25 6.64 29;24 64
Epinions 139.43 715;223 135 167.92 266;1 1052 171.1 268;1 5956
HTribes 6.18 7;4 3.2 6.18 7;4 5.1 6.18 7;4 6.3
Slashdot 79.88 224;1 7232 81.48 203;0 590 82.25 203;0 4178
Twit.Ref 174.43 675;4 3544 173.39 684;4 232 174.35 677;4 2033
WikiCon 185.48 1937;551 21322 167.02 1884;404 970 187.29 1788;559 13602
WikiEle 72.06 704;2 647 71.52 708;2 44 72.17 742;2 448
WikiPol 89.05 563;2 9876 84.45 462;0 762 88.89 618;2 5768

Ablation study. To assess the effect of the main components of our Neural2PC frame-
work, we focused an ablation study on the following simplifications of Neural2PC:
(i) NN, which discards the sgnn(·) block, hence it is composed of the nn(·) block
only, and (ii) Direct, which performs a direct optimization of the continuous z node-
to-community assignments by minimizing the L2PC loss function (Equation 5) via
projected gradient descent, i.e., at every step, gradient descent along with projection
of the assignment variables onto the range [−1, 1].

Results of the ablation study are shown in Table 8, in terms of polarity, size of the
solution and total execution time. The full Neural2PC is confirmed to be necessary to
achieve the best polarity on all datasets, or at least comparable with Direct (Twit-
terRef and WikiEle); the latter, however, is less efficient than Neural2PC, especially
on larger datasets. This can be explained by the fact that the sgnn(·) module in Neu-
ral2PC helps produce more similar continuous scores for nodes that are assigned to
the same community after rounding. That is, the rounding step of Neural2PC has to
test less thresholds than Direct, hence it takes less time. Also, concerning the size of
the communities, both Neural2PC and Direct yield solutions that involve more nodes
than NN.

The above results are complemented by an analysis of the trends of polarity
achieved by Neural2PC and its simplifications, by varying the number of training
epochs (up to emax = 300); results are shown in the Appendix . This analysis revealed
that the Direct variant often requires more epochs (on average, at least double) than
Neural2PC and NN to reach the maximum polarity.

Overall, the outcomes of this ablation study justify the need for all components of
the proposed Neural2PC framework.

γ-polarity results. In this experimental stage, we aim to delve into the impact of
the value of γ to the size as well as the quality of the solutions provided by Neural2PC
equipped with the γ-polarity loss function. Given γ, let xγ be the solution obtained
by optimizing the γ-polarity, e.g., x1 corresponds to the solutions obtained by opti-
mizing the L2PC loss. We are interested in evaluating the quality of the xγ solutions
for different values of γ both in terms of γ-polarity (i.e., the same value for γ used
for the training process) as well as in terms of the standard polarity, i.e., 1-polarity.
Also, we aim to analyze the γ-polarity of the x1 solutions as well as the size of the
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Table 9 γ-polarity scores of the proposed Neural2PC method vs. its
best-performing competing method, on Congress dataset.

γ Neural2PC competing
pγ(xγ) pγ(x1) p1(xγ) size model pγ size method

0.05 108.75 7.4 5.44 32;0 SGDNET 36.16 216.0;3.0 BNC(2)
0.1 54.38 7.35 5.44 32;0 SGDNET 22.05 216;3 BNC(2)
0.25 21.75 7.22 5.44 32;0 SGDNET 10.16 216;3 BNC(2)
0.5 10.88 7.16 5.44 32;0 SGCNatt 6.84 28;24 Eigen
0.66 8.21 6.89 5.42 31;0 SGDNET 6.75 28;24 Eigen
0.769 7.18 6.86 5.69 37;2 SGCNatt 6.70 28;24 Eigen
1.0 6.64 6.64 6.64 27;23 SGDNET 6.58 28;24 Eigen
1.3 6.62 6.44 6.62 26;26 SGDNET 6.43 28;24 Eigen
1.5 6.62 6.31 6.62 26;26 SGDNET 6.33 28;24 Eigen
2.0 6.65 5.77 6.65 23;23 SGCNatt 6.11 28;24 Eigen
4.0 6.67 4.44 6.67 24;24 SGCNmean 5.38 28;24 Eigen
10 6.62 4.09 6.62 32;32 SGCNsum 5.38 28;24 Eigen
20 6.56 2.87 6.56 27;27 SGCNsum 5.38 28;24 Eigen

Table 10 γ-polarity scores of the proposed Neural2PC method vs. its
best-performing competing method, on Slashdot dataset.

γ Neural2PC competing
pγ(xγ) pγ(x1) p1(xγ) size model pγ size method

0.05 1644.4 1645.69 82.22 209;0 SGCNmean 1654.4 200;0 Greedy
0.1 822.36 822.84 82.24 195;0 SGCNmean 827.2 200;0 Greedy
0.25 328.8 329.14 82.2 200;0 SGCNmean 330.88 200;0 Greedy
0.5 164.51 164.57 82.25 204;0 SGCNmean 165.44 200;0 Greedy
0.66 124.61 124.67 82.24 207;0 SGCNmean 125.33 200;0 Greedy
0.769 107.0 107.0 82.28 205;0 SGCNmean 107.57 200;0 Greedy
1.0 82.28 82.28 82.28 204;0 SGCNmean 82.72 200;0 Greedy
1.3 63.26 63.3 82.24 200;0 SGCNmean 63.63 200;0 Greedy
1.5 57.07 54.66 60.6 191;149 SGCNatt 55.15 200;0 Greedy
2.0 57.41 40.84 57.41 172;172 SGCNsum 41.36 200;0 Greedy
4.0 57.78 20.42 57.78 171;171 SGCNsum 20.68 200;0 Greedy
10.0 40.69 8.17 42.45 416;412 SGCNsum 8.27 200;0 Greedy
20.0 39.06 4.08 39.06 268;268 SGCNsum 4.14 200;0 Greedy

discovered polarized communities by varying γ. We selected several values of γ span-
ning a relatively large interval above 1 (up to 20); for each of such values, say n, we
also considered the reciprocal of n, in order to explore a comparable range of values
below 1; for instance, the dual of γ = 1.5 is γ = 0.66. We conducted this experiment
on 5 datasets but, for the sake of simplicity, we only show a subset of these results for
Congress (cf. Table 9) and Slashdot (cf. Table 10): details about these experiments
and on other datasets can be found in Appendix . Concerning our Neural2PC and the
competing methods, we report the results obtained by the best-performing (in terms
of γ-polarity) method.

Looking at the tables, several remarks stand out. First, Neural2PC results to be the
most competitive method in terms of γ-polarity on Congress for any γ; this holds only
after a certain value for γ (i.e., 1.5) on Slashdot. Second, as expected, the γ-polarity
of the solutions produced by the competing methods (as well as by Neural2PC trained
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Fig. 6 Solutions yielded by Neural2PC by optimizing γ-polarity (Def. 2), for different values of γ,
on the Congress dataset.

with the 1-polarity, i.e., pγ(x1)) monotonically decreases as γ increases. This is due
since, as γ increases, the denominator of γ-polarity increases. On the other hand, the
values for pγ(xγ) have a decreasing trend as γ increases, but not monotonic.

As for solution size, the two discovered polarized communities yielded by Neural2PC
tend to become more balanced (resp. unbalanced) for higher (resp. lower) values of
γ until, after a certain value threshold value, the two communities have the same
size (resp., one community is empty). On the contrary, the solutions provided by the
competing methods are highly unbalanced in size, especially on Slashdot where one
of the two detected community is empty. More interestingly, controlling the balance
between the size of the discovered communities is also beneficial in terms of 1-polarity.
In particular, this happens on Congress, where favoring polarized communities more
balanced in size (i.e., by setting γ > 1) leads to the best solutions in terms of 1-polarity,
i.e., p1(x4.0) = 6.67 > 6.64 = p1(x1) (cf. Table 9).

Figure 6 complements the above results by providing insights into the structural
properties of the detected polarized communities by Neural2PC (equipped with the
SGCNmean GNN) on the Congress dataset. Specifically, for γ = 0.1, one community
is empty and the other has 31 nodes with 81 inter-community positive edges and no
negative edges. With γ = 0.66, the empty community becomes a singleton (i.e., one
node), and the second has 36 nodes with 93 intra-community positive edges and 11
inter-community negative edges (1 positive edge). For γ = 1, there are two commu-
nities with 32 and 23 nodes, with 83 (resp. 52) internal positive edges, and they are
connected by 50 negative and 3 positive edges. Optimizing for 4-polarity results in two
communities with 24 nodes each, featuring 57 and 58 intra-community positive edges,
connected by 46 negative and 1 positive edge.

Overall, our experiments revealed the practical benefit of γ-polarity since we can
inspect the communities obtained for different γ values and keep the ones that best
suit our purposes.
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7 Conclusion

Summary. In this paper, we advanced the state of the art in 2pc, a well-established
combinatorial-optimization problem which aims to discover two polarized communi-
ties from a signed graph, through maximization of the so-called polarity function. We
provided a twofold contribution: (i) a novel neural-network-based approach to 2pc,
and (ii) a generalization of the polarity function, γ-polarity, which we suitably incor-
porate into the proposed neural framework. Notably, we addressed two key limitations
in the state of the art in 2pc: relying on a single relaxed solution for producing the
ultimate discrete solution, and mitigating size-unbalanced output communities.

Our experimental evaluation, which was conducted on 10 real-world signed net-
works and synthetically generated signed networks has provided empirical evidence of
the meaningfulness and relevance of our Neural2PC versus all competing methods for
discovering polarized groups. In particular, (i) Neural2PC outperforms all competitors
in terms of polarity value as well as coherent polarized structure and ability to produce
non-empty groups; (ii) using the γ-polarity loss enables flexibility of our Neural2PC,
which is useful to effectively control the balance of the sizes of the discovered polar-
ized groups; (iii) all components of Neural2PC are justified to lead it to achieve the
best polarity performance, and (iv) this appears to be relatively robust w.r.t. different
signed GNN models constituting its SGNN component; (v) the runtime of Neural2PC
scales linearly with the size of the network.

Future works.We believe that a number of further developments are worthy of inves-
tigation. First, we aim to address two main limitations of our framework, namely the
number of polarized groups that can be detected, and the separation of the rounding
block from the neural-network components. Addressing the former would be key-
enabling for extended polarization scenarios, such as on multi-party political networks.
To this purpose, major interventions would be to revise our approach to integrate
the extension of the 2pc task to a k > 2 polarization setting [9], and to refine the
(γ-)polarity loss and the computation of the continuous node-to-community assign-
ment solutions. The latter limitation would be overcome by integrating the rounding
block into the neural architecture: this way, by learning the rounding of the continu-
ous solution, the repeated trials of rounding thresholds τ could be avoided, thus also
overcoming a limitation of the early approximation algorithms for 2pc. Further inter-
esting research paths include to devise a custom GNN model for the 2pc task, and to
delve into the γ-polarity function from a combinatorial-optimization perspective.
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Appendix A Software and Hardware
Configurations

All the experiments were carried out on the Cresco6 cluster1, a high-performance com-
puting system running Linux Centos 7.4, and consisting of 434 nodes, where each one
is equipped with two Intel(R) Xeon(R) Platinum 8160 CPU @2.10GHz x24 processor
and 192GB ram.

Appendix B Additional Results

Impact of different signed GNNs on Neural2PC. Table B1 reports polarity and
community size values corresponding to all the variants of our Neural2PC method
based on different signed GNN models. It can be noticed that the polarity of the solu-
tions provided by Neural2PC does not significantly change across the various GNNs,
which indicates robustness of our approach in terms of one of its main components.
The only apparent exception is WikiCon, where the polarity change difference between
best-performing and worst-performing GNN model is about 13%. In all other cases,
this difference is ≤ 4%. Overall, SGCNsum achieves (slightly) best performance in
terms of polarity in most cases, followed by its variant SGCNmean. The better perfor-
mance of SGCNsum can be explained since the sum aggregator was demonstrated to
achieve better expressiveness in graph representation learning for signed graphs [18].
Concerning the impact of the regularization term, all the signed GNNs take benefit
from it in most cases. Also as concerns the size of communities, no evident difference
is observed across the various models.

Ablation study. Figures B1–B2 complement the ablation results discussed in the
main paper by providing insights into the trends of polarity achieved by Neural2PC and
its simplifications, as the number of training epochs increases. At first glance, it can be
noticed that the Direct variant generally converges much slower than Neural2PC and
NN, as the former requires more epochs to reach the maximum polarity. By contrast,
the polarity trend of full Neural2PC tends to have sharp increase just after few epochs;
this is generally followed by a plateau containing the polarity peak (or, like, e.g., in
Congress, a further increase at late epochs). Another interesting remark arises from
the number of epochs corresponding to the peak of the rounded solution: while it is
usually set around mid-high epochs for NN and Direct, it can be at low-mid epochs
for Neural2PC that, which would hint at much less requirements in terms of training
epochs when the Neural2PC framework is considered in its entirety.

1https://www.eneagrid.enea.it/CRESCOportal/
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Table B1 Polarity and solution size (|S1|; |S2|) of the proposed Neural2PC method when equipped
with different signed GNNs. Best results in bold, second-best underlined.

method criteria Bitcoin Cloister Congress Epinions HTribes Slashdot TwitterRef WikiCon WikiEle WikiPol

SGCNmean
pol. 29.84 7.455 6.62 171.1 6.18 82.24 174.24 178.37 72.13 88.62
size 152;11 8;3 29;24 268;1 7;4 203;0 678;4 1951;602 717;3 596;0

SGCNmean-DR
pol. 29.86 7.455 6.61 171.1 6.18 82.25 174.22 178.48 72.11 88.63
size 149;11 8;3 29;23 267;1 7;4 207;0 678;4 1992;580 723;2 558;0

SGCNsum
pol. 30.28 7.455 6.62 168.55 6.18 81.57 174.35 187.29 72.14 88.89
size 158;32 8;3 31;24 255;1 7;4 195;0 677;4 1788;559 742;2 618;2

SGCNsum-DR
pol. 30.25 7.455 6.62 170.31 6.18 81.68 174.32 187.16 72.17 88.84
size 155;33 8;3 29;24 273;0 7;4 203;1 669;4 1734;566 750;2 617;1

SGCNatt
pol. 29.75 7.455 6.63 170.96 6.18 81.92 174.31 179.24 71.91 88.66
size 143;12 8;3 29;24 268;1 7;4 200;0 674;4 1999;698 692;2 539;1

SGCNatt-DR
pol. 29.78 7.455 6.63 171.1 6.18 81.69 174.32 179.53 71.96 88.68
size 139;11 8;3 30;23 270;1 7;4 215;0 682;4 2041;618 692;2 558;2

SNEA
pol. 29.36 7.455 6.63 168.24 6.18 82 166.19 165.87 70.08 82.16
size 144;10 8;3 29;24 265;1 7;4 197;0 638;2 2009;647 640;0 468;0

SNEA-DR
pol. 29.41 7.455 6.64 168.3 6.18 81.92 166.76 166.05 70.25 82.47
size 135;2 8;3 29;23 277;0 7;4 194;0 623;2 1920;589 635;0 461;0

SGDNET
pol. 29.68 7.455 6.64 170.19 6.18 81.51 174 177.57 71.84 88.19
size 137;1 8;3 29;24 270;1 7;4 209;1 668;4 1904;571 685;2 578;3

SGDNET-DR
pol. 29.67 7.455 6.61 170.06 6.18 81.66 173.94 178.42 71.85 88.22
size 135;1 8;3 31;25 266;1 7;4 201;0 676;4 1893;570 729;2 578;3

γ-polarity results. Tables B2-B6 show the impact of the value of γ to the size as well
as the quality of the solutions provided by Neural2PC equipped with the γ-polarity
loss function. Looking at the tables, the Neural2PC method stands out as the most
competitive approach in terms of γ-polarity on Congress and WikiCon for any γ; this
holds only after a certain value for γ on the remaining datasets, i.e., 0.66 on Epinions
(cf. Table-B3), 1.5 on Slashdot (cf. Table-B4), and 0.83 on TwitterRef (cf. Table-B5).

As in the case of Congress dataset, discussed in the main paper, controlling the
balance between the size of the discovered communities is beneficial in terms of 1-
polarity also on the WikiCon dataset. However, this happens in such two cases with
different characteristics: (i) on Congress, where favoring polarized communities more
balanced in size (i.e., by setting γ > 1) leads to the best solutions in terms of 1-polarity,
i.e., p1(x4.0) = 6.67 > 6.64 = p1(x1) (cf. Table B2); (ii) on WikiCon, where favoring
size unbalance between communities (i.e., by setting γ < 1) has also a positive effect
in terms of 1-polarity, i.e., p1(x0.909) = 187.52 > 184.89 = p1(x1) (cf. Table B6).

Details on execution times. Table B7 shows details on the execution times by
Neural2PC and competing methods as shown in Fig. 5.
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(c) Slashdot

Fig. B1 Polarity scores by varying the number of epochs, for Neural2PC and its simplifications
relevant to the ablation study (i.e., Direct and NN). Each plot distinguishes between polarity of
the continuous (i.e., relaxed) solution and polarity of the discretized (i.e., rounded) solution. Green
vertical lines correspond to peaks of the rounded solutions’ polarity, while top red horizontal lines
set the upper-bound of polarity (i.e., polarity of the optimal (relaxed) solution to the 2PC-relaxed
instance on a particular graph).
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Fig. B2 (Cont.) Polarity scores by varying the number of epochs, for Neural2PC and its simplifica-
tions relevant to the ablation study (i.e., Direct and NN). Each plot distinguishes between polarity
of the continuous (i.e., relaxed) solution and polarity of the discretized (i.e., rounded) solution. Green
vertical lines correspond to peaks of the rounded solutions’ polarity, while top red horizontal lines
set the upper-bound of polarity (i.e., polarity of the optimal (relaxed) solution to the 2PC-relaxed
instance on a particular graph).
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Table B2 γ-polarity scores of the proposed Neural2PC method vs. its
best-performing competing method, on Congress dataset. Best results in
bold.

γ Neural2PC competing
pγ(xγ) pγ(x1) p1(xγ) size model pγ size method

0.05 108.75 7.4 5.44 32;0 SGDNET 36.16 216;3 BNC(2)
0.1 54.38 7.35 5.44 32;0 SGDNET 22.05 216;3 BNC(2)
0.25 21.75 7.22 5.44 32;0 SGDNET 10.16 216;3 BNC(2)
0.5 10.88 7.16 5.44 32;0 SGCNatt 6.84 28;24 Eigen
0.66 8.21 6.89 5.42 31;0 SGDNET 6.75 28;24 Eigen
0.714 7.64 6.92 5.68 36;2 SGCNatt 6.72 28;24 Eigen
0.769 7.18 6.86 5.69 37;2 SGCNatt 6.70 28;24 Eigen
0.83 6.86 6.77 6.3 34;12 SGDNET 6.66 28;24 Eigen
0.909 6.73 6.71 6.6 32;21 SGDNET 6.62 28;24 Eigen
1.0 6.64 6.64 6.64 27;23 SGDNET 6.58 28;24 Eigen
1.1 6.61 6.57 6.61 28;28 SGDNET 6.53 28;24 Eigen
1.2 6.62 6.5 6.64 27;26 SGDNET 6.48 28;24 Eigen
1.3 6.62 6.44 6.62 26;26 SGDNET 6.43 28;24 Eigen
1.4 6.61 6.44 6.61 28;28 SGCNsum 6.38 28;24 Eigen
1.5 6.62 6.31 6.62 26;26 SGDNET 6.33 28;24 Eigen
2.0 6.65 5.77 6.65 23;23 SGCNatt 6.11 28;24 Eigen
4.0 6.67 4.44 6.67 24;24 SGCNmean 5.38 28;24 Eigen
10 6.62 4.09 6.62 32;32 SGCNsum 5.38 28;24 Eigen
20 6.56 2.87 6.56 27;27 SGCNsum 5.38 28;24 Eigen

Table B3 γ-polarity scores of the proposed Neural2PC method vs. its
best-performing competing method, on Epinions dataset. Best results in bold.

γ Neural2PC competing
pγ(xγ) pγ(x1) p1(xγ) size model pγ size method

0.05 3405.82 3378.87 170.29 268;0 SGCNsum 3405.95 269;0 Greedy
0.1 1702.91 1689.44 170.29 268;0 SGCNsum 1702.97 269;0 Greedy
0.25 681.16 675.77 170.29 268;0 SGCNsum 681.19 269;0 Greedy
0.5 340.58 337.89 170.29 268;0 SGCNsum 340.59 269;0 Greedy
0.66 258.36 258.29 171.17 269;1 SGCNmean 258.03 269;0 Greedy
0.714 239.03 238.96 171.17 269;1 SGCNmean 238.51 269;0 Greedy
0.769 222.08 222.03 171.16 270;1 SGCNmean 221.45 269;0 Greedy
0.83 205.87 205.86 171.13 268;1 SGCNmean 205.18 269;0 Greedy
0.909 188.15 188.12 171.15 268;1 SGCNmean 187.35 269;0 Greedy
1.0 171.13 171.13 171.13 267;1 SGCNmean 170.3 269;0 Greedy
1.1 155.71 155.68 171.16 268;1 SGCNmean 154.82 269;0 Greedy
1.2 142.74 142.78 171.07 263;1 SGCNmean 141.91 269;0 Greedy
1.3 138.32 129.96 138.32 317;317 SGCNsum 131.0 269;0 Greedy
1.4 138.23 120.67 138.23 307;307 SGCNsum 121.64 269;0 Greedy
1.5 139.24 112.63 139.24 338;338 SGCNsum 113.53 269;0 Greedy
2.0 137.65 84.47 137.65 332;332 SGCNsum 85.15 269;0 Greedy
4.0 128.14 42.77 128.14 343;343 SGDNET 42.57 269;0 Greedy
10.0 84.39 16.89 84.39 867;867 SGCNsum 17.03 269;0 Greedy
20.0 94.61 8.45 100.51 918;912 SGCNsum 8.51 269;0 Greedy
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Table B4 γ-polarity scores of the proposed Neural2PC method vs. its
best-performing competing method, on Slashdot dataset. Best results in bold.

γ Neural2PC competing
pγ(xγ) pγ(x1) p1(xγ) size model pγ size method

0.05 1644.4 1645.69 82.22 209;0 SGCNmean 1654.4 200;0 Greedy
0.1 822.36 822.84 82.24 195;0 SGCNmean 827.2 200;0 Greedy
0.25 328.8 329.14 82.2 200;0 SGCNmean 330.88 200;0 Greedy
0.5 164.51 164.57 82.25 204;0 SGCNmean 165.44 200;0 Greedy
0.66 124.61 124.67 82.24 207;0 SGCNmean 125.33 200;0 Greedy
0.714 115.3 115.24 82.32 210;0 SGCNmean 115.85 200;0 Greedy
0.769 107.0 107.0 82.28 205;0 SGCNmean 107.57 200;0 Greedy
0.83 99.05 99.14 82.21 212;0 SGCNmean 99.66 200;0 Greedy
0.909 90.33 90.52 82.11 201;0 SGCNmean 91.0 200;0 Greedy
1.0 82.28 82.28 82.28 204;0 SGCNmean 82.72 200;0 Greedy
1.1 74.68 74.8 82.15 212;0 SGCNmean 75.2 200;0 Greedy
1.2 68.41 68.57 82.09 199;0 SGCNmean 68.93 200;0 Greedy
1.3 63.26 63.3 82.24 200;0 SGCNmean 63.63 200;0 Greedy
1.4 58.77 58.77 81.83 204;2 SGCNmean 59.09 200;0 Greedy
1.5 57.07 54.66 60.6 191;149 SGCNatt 55.15 200;0 Greedy
2.0 57.41 40.84 57.41 172;172 SGCNsum 41.36 200;0 Greedy
4.0 57.78 20.42 57.78 171;171 SGCNsum 20.68 200;0 Greedy
10.0 40.69 8.17 42.45 416;412 SGCNsum 8.27 200;0 Greedy
20.0 39.06 4.08 39.06 268;268 SGCNsum 4.14 200;0 Greedy

Table B5 γ-polarity scores of the proposed Neural2PC method vs. its
best-performing competing method, on TwitterRef dataset. Best results in bold.

γ Neural2PC competing
pγ(xγ) pγ(x1) p1(xγ) size model pγ size method

0.05 3471.67 2718.61 173.58 687;0 SGCNsum 3478.77 685;0 Greedy
0.1 1736.32 1576.08 173.63 695;0 SGCNmean 1739.39 685;0 Greedy
0.25 694.67 667.65 173.67 692;0 SGCNsum 695.75 685;0 Greedy
0.5 347.44 343.61 173.72 680;0 SGCNsum 347.88 685;0 Greedy
0.66 263.21 262.18 173.99 670;1 SGCNsum 263.54 685;0 Greedy
0.714 243.34 242.76 173.95 661;1 SGCNsum 243.61 685;0 Greedy
0.769 226.18 225.73 174.09 672;1 SGCNsum 226.19 685;0 Greedy
0.83 209.66 209.44 174.13 669;1 SGCNsum 209.56 685;0 Greedy
0.909 191.57 191.53 174.29 677;3 SGCNsum 191.35 685;0 Greedy
1.0 174.36 174.36 174.36 667;5 SGCNsum 174.08 669;4 Eigen
1.1 158.67 158.67 174.26 681;6 SGCNatt 158.43 669;4 Eigen
1.2 145.64 145.66 174.26 679;6 SGCNsum 145.36 669;4 Eigen
1.3 134.65 134.59 174.21 677;7 SGCNsum 134.28 669;4 Eigen
1.4 125.36 125.08 144.3 631;285 SGCNsum 124.77 669;4 Eigen
1.5 122.19 116.82 133.85 577;392 SGCNsum 116.52 669;4 Eigen
2.0 121.05 87.84 121.05 535;535 SGCNsum 87.56 669;4 Eigen
4.0 120.69 44.08 120.69 511;511 SGCNsum 43.91 669;4 Eigen
10.0 120.21 17.67 120.21 525;525 SGCNsum 17.6 669;4 Eigen
20.0 119.44 8.84 119.44 472;472 SGCNsum 8.8 669;4 Eigen
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Table B6 γ-polarity scores of the proposed Neural2PC method vs. its
best-performing competing method, on WikiCon dataset. Best results in bold.

γ Neural2PC competing
pγ(xγ) pγ(x1) p1(xγ) size model pγ size method

0.05 2786.89 394.05 139.34 1346;0 SGCNsum 2559.3 1151;0 Greedy
0.1 1392.95 371.91 139.29 1344;0 SGCNsum 1279.65 1151;0 Greedy
0.25 556.73 318.26 139.18 1373;0 SGCNsum 511.86 1151;0 Greedy
0.5 282.72 256.57 153.32 1562;69 SGCNsum 256.85 1993;449 Eigen
0.66 235.28 228.25 174.4 2372;322 SGCNsum 223.75 1993;449 Eigen
0.714 222.61 220.06 183.16 1873;440 SGCNsum 214.43 1993;449 Eigen
0.769 213.78 212.29 177.3 1311;197 SGCNsum 205.7 1993;449 Eigen
0.83 204.45 204.3 182.58 2027;461 SGCNsum 196.81 1993;449 Eigen
0.909 197.99 194.8 187.52 1725;457 SGCNsum 186.38 1993;449 Eigen
1.0 184.89 184.89 184.89 1911;541 SGCNsum 175.65 1993;449 Eigen
1.1 176.76 175.11 182.87 1766;859 SGCNsum 165.21 1993;449 Eigen
1.2 173.08 166.31 184.58 1636;820 SGCNsum 155.94 1993;449 Eigen
1.3 167.48 158.35 181.0 1608;926 SGCNsum 147.65 1993;449 Eigen
1.4 164.55 151.12 181.17 1602;956 SGCNsum 140.2 1993;449 Eigen
1.5 163.01 144.52 170.88 1464;1206 SGCNsum 133.46 1993;449 Eigen
2.0 162.57 118.62 162.78 1538;1534 SGCNsum 107.61 1993;449 Eigen
4.0 163.52 69.09 163.67 1611;1610 SGCNsum 60.64 1993;449 Eigen
10.0 158.57 30.67 158.57 1808;1808 SGCNsum 26.25 1993;449 Eigen
20.0 154.4 15.92 155.11 2054;2053 SGCNsum 13.5 1993;449 Eigen

Table B7 Execution times (in seconds) of the proposed Neural2PC method vs. competing
methods on real datasets.

dataset Eigen R-Eigen Pivot Greedy SPONGE BNC SSSNet Neural2PC

Bitcoin 0.61 1.07 4.33 1.56 0.15 0.89 258 130.4 (107.8)
Cloister 0.01 0.13 0.09 0.12 0.02 0.05 7.3 5.53 (5.5)
Congress 0.07 0.13 0.15 0.12 0.04 0.03 11.8 63.6 (62.4)
Epinions 8.75 133.66 1150.41 776.73 1.89 18.23 17799.6 5955.8 (5364)
HTribes 0.03 0.05 0.14 0.13 0.02 0.03 6.3 6.32 (6.3)
Slashdot 12.2 12.74 492.43 319.06 1.64 8.52 12121.1 4177.8 (3846.3)
TwitterRef 2.88 10.59 41.92 15.75 0.32 0.85 5214.2 2032.8 (1954.3)
WikiCon 155.21 133.84 2449.51 1145.88 2.52 18.61 31082.6 13601.8 (12966.9)
WikiEle 0.99 4.52 13.94 4.81 0.2 0.58 1591.8 447.8 (413.9)
WikiPol 44.56 27.39 1110.98 819.95 2.46 16.27 18259.8 5768.4 (5214.5)
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