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LOCAL POST-HOC EXPLANATIONS

– The term local refers to explaining the output
of the system for a particular input;

– The term post-hoc refers to interpreting the
system after it has been trained.

CLASSIFICATION MODELS
A (binary classification) model is a function:

M : {0, 1}n → {0, 1}
An instance x is a vector in {0, 1}n and repre-
sents a possible input for a model. We focused
on 3 significant categories of ML models:
– Free Binary Decision Diagram (FBDD): BDD

where no two nodes on any root-to-leaf
path share the same label;

– Multilayer perceptron (MLP): intuitively mod-
eling feed-forward NN with hidden layers;

– Perceptron: an MLP with no hidden layers.

COMPLEXITY CLASSES
– Decision Problems: boolean functions map-

ping strings to strings with boolean output;
– (N)P contains the set of decision prob-

lems solvable in polynomial time by a
(non)deterministic Turing machine;

– coNP is the complexity class containing the
complements of problems in NP.

EVEN-IF EXPLANATIONS
– While significant attention in AI has been given to counterfactual explanations, there has been

a limited focus on the equally important and related semifactual ‘even if’ explanations.

– While counterfactuals explain what changes to the input features of an AI system change the
output decision, semifactuals show which input feature changes do not change a decision outcome.

Example:
Binary and linear modelM : {0, 1}3 → {0, 1}
whereM = step(x · [−2, 2, 0] + 1)
the input x = [x1, x2, x3] denotes an applicant
(also called user) defined by means of the follow-
ing three features:

• f1 = “part-time job”;

• f2 = “requested (monthly) salary < 5K$”;

• f3 = “on-site job”.
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Consider a user x1 that applies for a full-time and on-site job, and the requested salary is lower
than 5K$ (i.e., x1 = [0, 1, 1]), we have that y1 = [0, 0, 0] and y2 = [1, 1, 0] are semifactual of x1 w.r.t.
M at maximum distance (i.e., 2) from x1 in terms of number of features changed. Intuitively, y1

represents the fact that ‘the user x1 will be hired even if (s)he had requested for a remote job and
the requested salary was greater than or equal to 5K$’, while y2 represents ‘the user x1 will be
hired even if (s)he had applied for a remote and part-time job’.

(Semifactual) Given a pre-trained modelM and an instance x, an instance y is said to be
a semifactual of x iff i)M(x) = M(y), and ii) there exists no other instance z 6= y s.t.
M(x) =M(z) and d(x, z)>d(x,y).

Contribution: We formally introduce the concepts of semifactual over perceptron, FBBD and MLP,
intuitively encoding local post-hoc explainable queries within the even-if thinking setting.

PREFERENCES
Contribution: As multiple counterfactuals/semifactuals may exist for each given instance, we introduce a framework that empowers users to
prioritize explanations according to their subjective preferences. Thus, the user expresses preferences over features to select the best semifactuals.

(Preference Rule) ϕ1 � · · · � ϕk ← ϕk+1 ∧ · · · ∧ ϕm where m ≥ k ≥ 2, and any ϕi ∈ {f1,¬f1, . . . fn,¬fn} is a (feature) literal, with i ∈ [1,m].

(BCMP framework) A binary classification model with preferences (BCMP) framework is a pair (M,�) whereM is a model and � a set of
preference rules over features ofM. We use y A z to denote the fact that the explanation y is strictly preferred to the explanation z (w.r.t. �).

Example (cont’d): Suppose that the user x1 looks for another opportunity and prefers to change feature f2 rather than f1 (irrespective of any other
change), that is (s)he would prefer to still get hired by changing the salary to be greater than or equal to 5K$ (obtaining y1); if this cannot be
accomplished, then (s)he prefers to get it by changing the job to part-time (i.e. y2).

COMPLEXITY RESULTS
Contributions: We investigate the complexity of the following interpretability problems related to (best) semifactuals and counterfactuals:

Existence of Counterfactuals
PROBLEM: MINIMUMCHANGEREQUIRED (MCR)
INPUT: ModelM, instance x, and k ∈ N.
OUTPUT: YES, if there exists an instance y with d(x,y) ≤ k and

M(x) 6=M(y); NO, otherwise.

Existence of Semifactuals
PROBLEM: MAXIMUMCHANGEALLOWED (MCA)
INPUT: ModelM, instance x, and k ∈ N.
OUTPUT: YES, if there exists an instance y with d(x,y) ≥ k and

M(x) =M(y); NO, otherwise.

Verification of Best Counterfactuals
PROBLEM: CHECKBESTMCR (CB-MCR)
INPUT: BCMP (M,�), instances x, y with d(x,y) = k, and

M(x) 6=M(y).
OUTPUT: YES, if there is no z with M(x) 6= M(z) and either

d(x, z) ≤ k − 1, or d(x, z)=k and z A y; NO, otherwise

Verification of Best Semifactuals
PROBLEM: CHECKBESTMCA (CB-MCA)
INPUT: BCMP (M,�), instances x, y with d(x,y) = k, and

M(x) =M(y).
OUTPUT: YES if there is no z withM(x) =M(z) and either d(x, z) ≥

k + 1 or d(x, z) = k and z A y; NO, otherwise.

– Computing semifactuals under perceptrons and FBDDs is easier than under MLP;
– Computing semifactuals is as hard as computing counterfactuals;
– Perceptrons and FBDDs are strictly more interpretable than MLPs;
– Preferences do not make the existence of counterfactual/semifactual problem harder;
– Preferences do not make the verification problems harder when the BCMP contains a

single preference rule with empty body (called linear).

Contributions: For BCMP with linear preference, we propose PTIME algorithms for the
computation of best counterfactuals/semifactuals under Perceptrons and FBDDs.

FBDDS PERCEPTRONS MLPS

MCR PTIME PTIME NP-c
MCA PTIME PTIME NP-c
CB-MCR coNP coNP coNP-c
CB-MCA coNP coNP coNP-c
CBL-MCR PTIME PTIME coNP-c
CBL-MCA PTIME PTIME coNP-c

Grey-colored cells refer to existing results. L stands for linear preferences.


