

Even-if Explanations: Formal Foundations, Priorities and Complexity

GIANVINCENZO ALFANO, SERGIO GRECO, DOMENICO MANDAGLIO, FRANCESCO PARISI, REZA SHAHBAZIAN, IRINA TRUBITSYNA

Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, ITALY

{g.alfano, greco, fparisi, i.trubitsyna, reza.shahbazian}@dimes.unical.it

LOCAL POST-HOC EXPLANATIONS

- The term *local* refers to explaining the output of the system for a particular input;
- The term *post-hoc* refers to interpreting the system after it has been trained.

CLASSIFICATION MODELS

- A (binary classification) model is a function: $\mathcal{M}: \{0,1\}^n \to \{0,1\}$ An instance x is a vector in $\{0,1\}^n$ and represents a possible input for a model. We focused on 3 significant categories of ML models:
- Free Binary Decision Diagram (FBDD): BDD where no two nodes on any root-to-leaf path share the same label;
- *Multilayer perceptron (MLP)*: intuitively modeling feed-forward NN with hidden layers;
- *Perceptron*: an MLP with no hidden layers.

EVEN-IF EXPLANATIONS

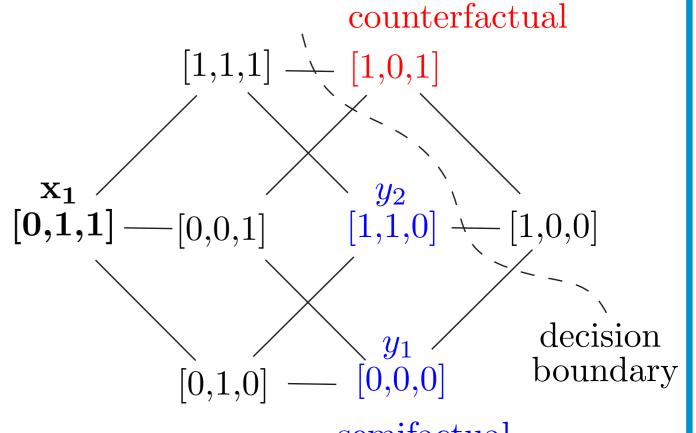
- While significant attention in AI has been given to counterfactual explanations, there has been a limited focus on the equally important and related semifactual 'even if' explanations.
- While counterfactuals explain what changes to the input features of an AI system change the output decision, *semifactuals* show which input feature changes do not change a decision outcome.

Example:

Binary and linear model $\mathcal{M}: \{0,1\}^3 \rightarrow \{0,1\}$ where $\mathcal{M} = step(\mathbf{x} \cdot [-2, 2, 0] + 1)$ the input $\mathbf{x} = [x_1, x_2, x_3]$ denotes an applicant (also called user) defined by means of the following three features:

- $f_1 =$ "part-time job";
- $f_2 =$ "requested (monthly) salary < 5K\$";
- $f_3 =$ "on-site job".

decision y_1 boundary [0,0,0][0,1,0]semifactual Consider a user x_1 that applies for a full-time and on-site job, and the requested salary is lower than 5K\$ (i.e., $x_1 = [0, 1, 1]$), we have that $y_1 = [0, 0, 0]$ and $y_2 = [1, 1, 0]$ are semifactual of x_1 w.r.t.



COMPLEXITY CLASSES

- Decision Problems: boolean functions mapping strings to strings with boolean output;
- (N)P contains the set of decision problems solvable in polynomial time by a (non)deterministic Turing machine;
- coNP is the complexity class containing the complements of problems in NP.

 \mathcal{M} at maximum distance (i.e., 2) from \mathbf{x}_1 in terms of number of features changed. Intuitively, \mathbf{y}_1 represents the fact that 'the user x_1 will be hired *even if* (s)he had requested for a remote job and the requested salary was greater than or equal to 5K\$', while y_2 represents 'the user x_1 will be hired even if (s)he had applied for a remote and part-time job'.

(Semifactual) Given a pre-trained model \mathcal{M} and an instance x, an instance y is said to be a semifactual of x iff i) $\mathcal{M}(\mathbf{x}) = \mathcal{M}(\mathbf{y})$, and ii) there exists no other instance $\mathbf{z} \neq \mathbf{y}$ s.t. $\mathcal{M}(\mathbf{x}) = \mathcal{M}(\mathbf{z}) \text{ and } d(\mathbf{x}, \mathbf{z}) > d(\mathbf{x}, \mathbf{y}).$

<u>Contribution</u>: We formally introduce the concepts of semifactual over perceptron, FBBD and MLP, intuitively encoding local post-hoc explainable queries within the even-if thinking setting.

PREFERENCES

<u>Contribution</u>: As multiple counterfactuals/semifactuals may exist for each given instance, we introduce a framework that empowers users to prioritize explanations according to their subjective preferences. Thus, the user expresses preferences over features to select the best semifactuals.

(Preference Rule) $\varphi_1 \succ \cdots \succ \varphi_k \leftarrow \varphi_{k+1} \land \cdots \land \varphi_m$ where $m \ge k \ge 2$, and any $\varphi_i \in \{f_1, \neg f_1, \dots, f_n, \neg f_n\}$ is a (feature) literal, with $i \in [1, m]$.

(**BCMP framework**) A binary classification model with preferences (BCMP) framework is a pair (\mathcal{M}, \succ) where \mathcal{M} is a model and \succ a set of preference rules over features of \mathcal{M} . We use $\mathbf{y} \supseteq \mathbf{z}$ to denote the fact that the explanation \mathbf{y} is strictly preferred to the explanation \mathbf{z} (w.r.t. \succ).

Example (cont'd): Suppose that the user x_1 looks for another opportunity and prefers to change feature f_2 rather than f_1 (irrespective of any other change), that is (s)he would prefer to still get hired by changing the salary to be greater than or equal to 5K (obtaining y_1); if this cannot be accomplished, then (s)he prefers to get it by changing the job to part-time (i.e. y_2).

COMPLEXITY RESULTS

<u>Contributions</u>: We investigate the complexity of the following interpretability problems related to (best) semifactuals and counterfactuals:

Existence of Counterfactuals

Existence of Semifactuals

DDODIENT. MINIMUM CHANCEDEOUDED (MCD)

computation of best counterfactuals/semifactuals under Perceptrons and FBDDs.

PROBLEM: MINIMUMCHANGEREQUIRED (MCR)	PROBLEM: MAXIMUMCHANGEALLOWED (MCA)				
INPUT: Model \mathcal{M} , instance x , and $k \in \mathbb{N}$.	INPUT: Model \mathcal{M} , instance x , and $k \in \mathbb{N}$.				
OUTPUT: YES, if there exists an instance y with $d(\mathbf{x}, \mathbf{y}) \leq k$ and	OUTPUT: YES, if there exists an instance y with $d(x, y) \ge k$ and				
$\mathcal{M}(\mathbf{x}) \neq \mathcal{M}(\mathbf{y})$; NO, otherwise.	$\mathcal{M}(\mathbf{x}) = \mathcal{M}(\mathbf{y})$; No, otherwise.				
Verification of Best Counterfactuals	Verification of Best Semifactuals				
PROBLEM: CHECKBESTMCR (CB-MCR)	PROBLEM: CHECKBESTMCA (CB-MCA)				
INPUT: BCMP (\mathcal{M}, \succ) , instances x , y with $d(\mathbf{x}, \mathbf{y}) = k$, and	INPUT: BCMP (\mathcal{M},\succ) , instances x , y with $d(\mathbf{x},\mathbf{y}) = k$, and				
$\mathcal{M}(\mathbf{x}) eq \mathcal{M}(\mathbf{y}).$	$ $ $\mathcal{M}($	$(\mathbf{x}) = \mathcal{M}(\mathbf{y}).$			
OUTPUT: YES, if there is no z with $\mathcal{M}(\mathbf{x}) \neq \mathcal{M}(\mathbf{z})$ and either	OUTPUT: YES if there is no z with $\mathcal{M}(\mathbf{x}) = \mathcal{M}(\mathbf{z})$ and either $d(\mathbf{x}, \mathbf{z}) \ge d$				
$d(\mathbf{x}, \mathbf{z}) \le k - 1$, or $d(\mathbf{x}, \mathbf{z}) = k$ and $\mathbf{z} \sqsupset \mathbf{y}$; NO, otherwise	$k + 1$ or $d(\mathbf{x}, \mathbf{z}) = k$ and $\mathbf{z} \sqsupset \mathbf{y}$; NO, otherwise.				
 Computing semifactuals under perceptrons and FBDDs is easier than under MLP; Computing semifactuals is as hard as computing counterfactuals; Perceptrons and FBDDs are strictly more interpretable than MLPs; Preferences do not make the existence of counterfactual/semifactual problem harder; Preferences do not make the verification problems harder when the BCMP contains a 			FBDDs	PERCEPTRONS	MLPS
		MCR	PTIME	PTIME	NP-c
		MCA	PTIME	PTIME	NP-c
		CB-MCR	coNP	coNP	coNP-c
		CB-MCA	coNP	coNP	coNP-c
single preference rule with empty body (called linear).		CBL-MCR	PTIME	PTIME	coNP-c
Contributions: For BCMP with linear preference, we propose PTIME algo	orithms for the	CBL-MCA	PTIME	PTIME	coNP-c
		· · · · ·	· · · · · · · · · · · · · · · · · · ·		

Grey-colored cells refer to existing results. L stands for linear preferences.