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Min-Disagreement Correlation Clustering Problem

Ø We focus for the first time on global weight bounds for 
correlation clustering, focusing on its minimization objective. 

Ø We identify a sufficient condition on input weights’ aggregate 
functions to extend the validity range of the approximation
guarantees of existing correlation-clustering algorithms beyond
the probability constraint.

Ø We experimentally assess that our condition is an effective
indicator of the empirical performance of existing probability-
constraint-aware correlation-clustering algorithms.

Ø We showcase our results in a real-world scenario of fair 
clustering.
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Exp1: Analysis of the global-weight-bounds condition

Given an undirected graph 𝐺 = (𝑉, 𝐸), with vertex set 𝑉 and edge
set 𝐸 ⊆ 𝑉×𝑉, and weights 𝑤!"# , 𝑤!"$ ∈ ℝ%# for all edges 𝑢, 𝑣 ∈ 𝐸, find
a clustering 𝒞: 𝑉 → ℕ# that minimizes:
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Any 𝑤!"# (resp. 𝑤!"$ ) weight
expresses the benefit of 
clustering 𝑢 and 𝑣 together
(resp. separately)

1. 𝐺eneral graph and general weights
• Linear Programming + Rounding

with 𝑂(log 𝑛) approximation
guarantees

2. 𝐸 = )
* and 𝑤!"# + 𝑤!"$ = 1 ∀ 𝑢, 𝑣 ∈ 𝐸

• Pivot algorithm with (expected)   
5-approximation guarantees and 
𝑂( 𝐸 ) time complexity
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Can probability-constraint-aware approximation algorithms
(e.g. Pivot) still achieve guarantees even if the probability

constraint is not met? 
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Strict approximation-preserving reduction:

𝜏!"$ + 𝜏!"% = 1
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An 𝛼-approximate clustering on 𝐺′ is
also 𝛼-approximate clustering on 𝐺 too 

Construct 𝐺& in 
linear time and 

space

Clustering 𝐶

• Practical benefits: 
• Extend the validity range of the approximation guarantees of 

algorithms for correlation clustering (Exp1)
• Application to feature selection for fair clustering (Exp2)

• Theoretical benefits: enable better theoretical results on complex
problems which exploit correlation clustering as a building block

• Benefits for the research community: brand new line of research

𝐺 with GWB 𝐺′ with PC 

A better fulfilment of our GWB leads to Pivot’s performance closer to the 
linear programming approach’s one (LP+R, for short), and vice versa.

Exp2: Application to fair clustering

Mapping to Correlation Clustering instance:
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Attribute selection for fair clustering. Given a set of objects 𝑋 defined
over the attribute sets 𝐴- and 𝐴¬-, find maximal subsets 𝑆- ⊆ 𝐴- and 
𝑆¬- ⊆ 𝐴¬-, with |𝑆-| ≥ 1 and |𝑆¬-| ≥ 1, s.t. the above correlation-
clustering weights satisfy the GWB condition.

Global Weight Bound (GWB) condition

Fair clustering objective:
• non-sensitive attributes: minimize the inter-cluster 

similarities and maximize the intra-cluster similarities
• sensitive attributes: minimize the intra-cluster 

similarities and maximize the inter-cluster similarities

Data. Relational datasets describing a set of objects 𝑋 defined over a 
set of attributes 𝐴 (numerical or categorical) that can be divided into:

• Fairness-aware (or sensitive) attributes 𝐴-
• Non-sensitive attributes 𝐴¬-

The GWB condition can help to define weights so as to account for both
an effective representation of the semantics underlying objects’ 
features, and the peculiarities that make the downstream correlation-
clustering algorithm effective. 


