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Overview Bridging 2PC and DS

» Problem & Motivation. The 2-Polarized-Communities (2PC) task (Bonchi et /zpc_ Given a signed graph ¢ = (V,E*,E™), find S;,S, € V, that maximizes: h
al., 2019) seeks two disjoint node sets in a signed network that are internally .\ - - .
cohesive (mostly positive intra-group edges) and mutually antagonistic 2iep2)([E7 ()|~ |E (SO +E7(S1,S2)| = |E7(S, S2)

51,85, G) =
(mostly negative inter-group edges), while keeping their total size relatively P(S1,52 G) |1S; U S,|
small. Prior work has neither examined the implicitly optimized density I\ %
measure by 2PC nor leveraged the rich algorithmic toolbox developed for Key concept. Net Degree Balance: For any node u, its net degree
the Densest Subgraph (DS) problem. balance w.r.t. a pair of polarized communities S = {S,S,} is
> Key Idea. We show that 2PC can be viewed as a densest-subgraph—like dE(u) = #Cz?mPcljia”I tedg)es - #”OTPOr_T(‘jp”?[T 90;995
incident to u incident to u

optimization problem on signed graphs, where the optimized density is
defined via a signhed degree measure, dubbed net degree balance, that
rewards compliant edges and penalizes noncompliant ones.

» Algorithm & Evaluation. Building on this bridge, we propose Greedy-2PC, a
greedy peeling algorithm, seeded by a spectral relaxation. We evaluate

Greedy-2PC on real-world and synthetic signed networks, conducting a ﬂ
comparative evaluation against Pivot (Bansal et al., 2004), BNC (Chiang et 2PC polarity (reframed) DS density
al., 2012), SPONGE (Cucuringu et al., 2019), SSSNet (He et al., 2022), 3 dE (u) Y edo(V)
TIMBAL (Ordozgoiti et al., 2020), EIGEN (Bonchi et al., 2019), Neural2PC p(S1,5,;G) = uei,lufj SS ves“s‘s
(Gullo et al., 2024). and RH (Chen et al., 2024), . [51 U 52
The Greedy-2PC Algorithm

Algorithm 2 Greedy-2PC Algorithm 1 E1GeN-FULL Key Benefits of Greedy-2PC
Input: Signed graph G = (V,E*,E7) Input: Signed graph G = (V,E*,E7) . .. .

_ o : " Output: A pair S = {S1, S2} of polarized communities @ Highly efficient: Greedy-2PC runs in
Output: A pair S = {S1, Sz} of polarized communities o(|V| + |E] time.

1: Compute z*, the eigenvector corresponding to the

. QSEED _ :
. ‘E. ;EEIGEI: FULIS"E(S)) {{%lgorlthm I largest eigenvalue A; of the signed adjacency matrix A of G o _ _
22 S = 577, ST S5, e n 2 S1={ueV:zt >0}, ={ueV:z <0} Effective in practice: It consistently
3: while [S]US)| > 1do outperforms SOTA methods for 2PC.
¢ u=argming,cgigi d;i (v) [
) . . peeled nodes () minimum net-degree balance node (O current solution] - Th - r .
. remove u from Si or SE in Si r eoretical (additive) guarantees:
o if p(Si,Si:G) > ;(51 %2 G) then =2l Under condition $; c s5€€d sz c gseed,
. S sz p(S51,5,;G) = OPT — ¢, where c is a term
e.  end if related to the (maximum) #noncompliant
0 jei—1 edges of the peeled nodes.

10: end while
11: return S

E.: Simple to implement.

Results

Comparative evaluation. Greedy-2PC outperforms competing methods on 11 real-world datasets in polarity and agreement ratio, and on synthetic graphs
generated with a modified Signed Stochastic Block Model (with ground-truth communities) in F1 and polarity across noise levels n, while remaining highly

efficient and scalable on large networks (poster: we report only the strongest competitors for effectiveness; full tables are in the paper).
method criteria || Bitcoin | Cloister | Congress | Epinions | HIribes | Slashdot | TwitterRef | WikiCon | WikiEle | WikiPol | Word method criteria 0 0.1 0.9 % 3 0.4 05 | 06
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