

## Link Prediction on Multilayer Networks through Learning of Within-Layer and Across-Layer Node-Pair Structural Features and Node Embedding Similarity

Lorenzo Zangari Iorenzo.zangari@dimes.unical.it DIMES, University of Calabria, Rende (CS), Italy Domenico Mandaglio d.mandaglio@dimes.unical.it DIMES, University of Calabria, Rende (CS), Italy Andrea Tagarelli andrea.tagarelli@unical.it DIMES, University of Calabria, Rende (CS), Italy

## Overview

## Motivation

Graph Algorithms and Modelling for the Web

- We define ML-Link, a neural-network based learning framework for link prediction on (attributed) multilayer networks. Its purpose is to estimate the probability of edge existence within an arbitrary set of layers.
- GNN representation learning design limits their ability to capture linkspecific information, resulting in classic heuristics achieving comparable performance in link prediction tasks.
- We focus on augmenting multilayer Graph Neural Networks (GNNs) with node-pair structural features learned from both within- and across-layer information.
- We assess the significance of ML-Link on real-world and synthetic multilayer networks, conducting a comparative evaluation against MAGMA (Coscia et al., 2022), Pujari (Pujari et al., 2015), Jalili (Jalili et al., 2017), Hristova (Hristova et al., 2016), MAA (Aleta et al., 2020), MELL (Matsuno et al., 2018), CrossMNA (Chu et al., 2019), ML-GAT (Zangari et al., 2021), GATNE (Cen et al., 2019), Neo-GNN (Yun et al., 2021) and SEAL (Zhang et al., 2018).
- We aim to inject node-pair-level (multilayer) structural features based on the shared neighborhoods of any two nodes into the learning process.
- Learning link structural information by considering the overlapping neighborhood between any pair of layers enable to generalize singlelayer and multilayer link prediction heuristics.
- Exploiting different overlapping multilayer neighbors enable a holistic view of the multilayer neighborhood:
  - Overlapping across-layer neighborhood (OAN) considers the shared entitiy-neighbors across two layers.
  - Multilayer Adamic-Adar neighborhood (MAAN) considers triadic closure relations across two layers.

## **ML-Link**

**ML-Link** is an end-to-end framework for link prediction based on two components:

- 1. NN-based node pair neighborhood features extraction (NN-NPN) learns node-pair structural information by leveraging the ISL, ESL and CLA modules.
- **2. GNN-based node embedding (GNN-NE)** learns node representation based on external available node information through a multilayer GNN module.
- ISL captures within-layer topological information between the target nodes.
- **ESL** captures multilayer information between the entities related to the target nodes, through the context-aware vectors  $z^{(\tau)}$ , where  $\tau$  is a



type of overlapping multilayer neighborhood (e.g., MAAN).



• **CLA** weights the importance of each type of overlapping multilayer neighborhood through an attention mechanism.

**Comparative evalution:** ML-Link outperforms 11 competing methods and 6 heuristics (ensemble) in terms of AUC and AP.

| Method   | Cs-Aarhus     | CKM    | Elegans       | Lazega | DkPol  | ArXiv  |
|----------|---------------|--------|---------------|--------|--------|--------|
| Add Link | 97.208        | 99.269 | 99.646        | 99.557 | 99.552 | 99.342 |
| ML-LINK  | 97.348        | 99.268 | 99.645        | 99.579 | 99.515 | 99.470 |
| Ensemble | 89.831        | 73.528 | 80.322        | 81.860 | 92.124 | 99.171 |
|          | 89.520        | 72.906 | 79.759        | 80.398 | 92.423 | 99.293 |
| MAGMA    | 85.606        | 92.341 | 96.176        | 82.188 | 90.749 | 96.238 |
|          | 80.619        | 89.659 | <u>96.335</u> | 79.036 | 89.632 | 96.114 |
| Pujari   | 83.218        | 69.225 | 77.017        | 64.564 | 79.241 | OOT    |
|          | 75.559        | 74.774 | 76.763        | 58.747 | 71.735 | OOT    |
| Jalili   | 80.717        | 79.730 | 67.987        | 59.801 | 73.408 | OOT    |
|          | 76.270        | 70.188 | 65.248        | 55.223 | 72.701 | OOT    |
| Hristova | 79.766        | 71.803 | 56.198        | 55.054 | 62.586 | OOT    |
|          | 60.176        | 61.44  | 54.097        | 53.626 | 53.295 | OOT    |
| МАА      | 92.083        | 85.151 | 86.025        | 79.682 | 90.719 | OOT    |
|          | <u>91.611</u> | 86.692 | 84.422        | 78.260 | 89.438 | OOT    |
| MELL     | 73.641        | 68.357 | 82.093        | 64.262 | 45.918 | OOM    |
|          | 77.517        | 77.521 | 88.644        | 70.328 | 48.570 | OOM    |
| CrossMNA | 78.589        | 88.317 | 88.389        | 74.54  | 68.371 | 98.318 |
|          | 75.457        | 87.859 | 87.203        | 69.68  | 61.268 | 98.426 |
| ML-GAT   | 89.432        | 88.517 | 96.307        | 72.623 | 85.382 | 82.635 |
|          | 88.754        | 86.751 | 95.236        | 69.047 | 84.015 | 76.617 |
| GATNE    | 85.096        | 90.033 | 88.389        | 78.352 | 75.579 | 98.914 |
|          | 84.459        | 88.445 | 87.203        | 75.231 | 73.317 | 99.187 |
| Neo-GNN  | 83.370        | 89.094 | 82.793        | 78.956 | 81.084 | 92.176 |
|          | 82.986        | 87.591 | 82.405        | 78.428 | 81.983 | 93.847 |
| SEAL     | 81.986        | 83.898 | 87.979        | 81.429 | 95.004 | 98.823 |
|          | 82.316        | 83.651 | 86.517        | 80.140 | 94.684 | 98.816 |

Results

**Ablation analysis:** all architectural components of ML-Link are effective.

| Method                    | Cs-Aarhus | СКМ    | CKM Elegans   |        | DkPol         |
|---------------------------|-----------|--------|---------------|--------|---------------|
| CNINI NIE                 | 89.432    | 88.517 | 96.307        | 72.603 | 85.382        |
| GININ-INE                 | 88.754    | 86.751 | 95.236        | 69.047 | 84.015        |
| ISL                       | 84.622    | 62.450 | 75.158        | 78.905 | 85.924        |
|                           | 84.848    | 68.512 | 73.560        | 77.035 | 85.699        |
| ISL w/                    | 91.16     | 89.341 | 96.253        | 80.577 | 90.398        |
| GNN-NE                    | 91.07     | 88.645 | 95.377        | 79.867 | 92.031        |
| ISL w/                    | 90.410    | 72.301 | 82.172        | 78.294 | 85.531        |
| ESL ( $\Gamma^{(oan)}$ )  | 89.946    | 76.821 | 79.523        | 77.455 | 82.478        |
| ISL w/                    | 89.175    | 70.723 | 79.369        | 80.527 | 87.915        |
| ESL ( $\Gamma^{(maan)}$ ) | 88.769    | 75.393 | 77.826        | 78.456 | 86.236        |
| ISI w/ ESI                | 90.284    | 73.191 | 82.693        | 81.254 | 87.521        |
| ISE W/ ESE                | 89.566    | 77.709 | 80.294        | 79.200 | 86.228        |
| NINL-NIDNI                | 95.927    | 98.561 | 98.828        | 99.023 | 98.036        |
| ININ-INI IN               | 95.481    | 97.576 | <u>98.865</u> | 99.104 | <u>98.560</u> |
| MI_Link                   | 97.208    | 99.269 | 99.646        | 99.557 | 99.552        |
|                           | 97.348    | 99.268 | 99.645        | 99.579 | 99.515        |



**Efficiency analysis:** ML-Link tends to be faster than the strongest competing method on two sets of syntethic networks.

**Sensitivity analysis:** ML-Link is robust w.r.t. its main hyper-parameter  $\psi$ , which weights the importance of ISL vs ESL and CLA modules.

|                     | $\beta = 0.1$ |        |         | $\beta = 0.5$ |         |         |  |
|---------------------|---------------|--------|---------|---------------|---------|---------|--|
|                     | ML-Link       |        | MAGMA   | ML-Link       |         | MAGMA   |  |
| $ V_{\mathcal{L}} $ | GPU           | CPU    | CPU     | GPU           | CPU     | CPU     |  |
| 1500                | 0.013         | 0.095  | 0.027   | 0.023         | 0.167   | 0.043   |  |
| 3000                | 0.020         | 0.403  | 0.154   | 0.034         | 0.718   | 0.453   |  |
| 4500                | 0.030         | 1.193  | 0.670   | 0.059         | 2.271   | 1.595   |  |
| 6000                | 0.060         | 3.792  | 5.173   | 0.120         | 7.280   | 5.636   |  |
| 7500                | 0.102         | 7.938  | 8.489   | 0.211         | 15.589  | 12.478  |  |
| 9000                | 0.179         | 17.627 | 20.339  | 0.397         | 33.054  | 29.131  |  |
| 10500               | 0.339         | 31.074 | 34.781  | 0.740         | 60.217  | 54.932  |  |
| 12000               | 0.641         | 62.395 | 77.394  | 1.322         | 117.877 | 148.338 |  |
| 13500               | 1.366         | 88.707 | 127.924 | 2.659         | 184.375 | 235.066 |  |

Scan the QR code to access the ML-Link GitHub repository







