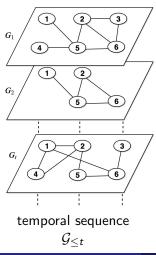
Dynamic Consensus Community Detection and Combinatorial Multi-Armed Bandit

Domenico Mandaglio and Andrea Tagarelli *d.mandaglio@dimes.unical.it, andrea.tagarelli@unical.it*

DIMES, University of Calabria, Italy

29th August 2019

Community Detection (CD) in Temporal Networks



- need for modeling the change events in the communities and tracking their evolution.
- **Challenges**: choice of timestep width, different type and occurring rates of community evolution events.
- incremental nature of the problem

Applications

- enhanced group-recommendation
- user behavior prediction
- evolution of user interaction patterns in relation to real-world events

Existing approaches:

- try to discover a sequence of mappings for the community structures independently derived at each time step
- detect a community structure for the current topology as dependent on the structure(s) from prior time step(s)
- update a community structure in order to reflect newly observed changes
- aggregate the various snapshots of the network in order to enable a static community detection method

- require to match and/or track the evolution of communities over time
- depend on specific community-change events (merge, split, etc.)
- depend on restricted graph models
- assume the same nodes and number of communities for each snapshot

CD in Temporal Networks as Consensus problem

Requirement: balancing over time between the need for embedding long-term changes observed in the community formation and the need for capturing short-term effects and newly observed community structures.

• give more importance to the more recent community structures in the consensus generation

Dynamic consensus community structure

A community structure that encompasses the knowledge about newly observed as well as the previously detected communities in a temporal network

Input: Given the temporal graph sequence $\mathcal{G}_{\leq t}$ (undirected and unweighted graphs) and associated set of detected community structures (non-overlapping communities) **Output**: for any time $1 \leq t \leq T$, compute a dynamic consensus

community structure $C_{\leq t}$ such as to maximize:

$$R(T) = \sum_{t=1}^{T} Q_t(\mathcal{C}_{\leq t})$$

where Q_t is a chosen quality criterion for a community structure, over the history (before *t*) of the network (e.g. multilayer modularity ¹).

¹A. Tagarelli et al. "Ensemble-based community detection in multilayer networks". Data Min. Knowl. Discov. (2017)

Dynamic co-association matrix (DCM) **M**: the (i, j)-th entry of **M**, denoted as m_{ij} , stores the probability of co-association for entities $v_i, v_j \in V$, i.e., the probability that v_i and v_j are assigned to the same community, in the observed timespan

Computing meaningful co-associations and properly maintaining and updating the consensus community structure over time is challenging:

- avoid (re)computation of the consensus from scratch
- avoid to depend on any mechanism of tracking of the evolution of communities
- \bullet density of ${\bf M}$

Reinforcement Learning approach to DCCD problem

Reinforcement Learning:

- interrelated actions with unknown "rewards" ahead of time
- choose which actions to take in order to maximize the reward
- exploitation/exploration trade-off
 - exploitation: make the best decision given current information
 - exploration: gather more information

CD in temporal networks

- uncertainty about the temporal network system, and the structural changes and consequent decisions to take about the node memberships and structure of the communities
- balancing between relying on older community structures and newly observed ones

Multi-Armed Bandit (MAB)

- A is a set of *m* slot-machines/arms to choose from
- each arm is associated with a set of random variables $\{X_i^t \mid 1 \le i \le m, t \ge 1\}$, $X_i^t \in [0, 1]$
- At each step t the agent selects/plays an arm a_t ∈ A and the reward X^t_{at} is revealed
- The goal is to maximise the cumulative reward $R(T) = \sum_{t=1}^{T} X_{a_t}^t$
- The goal is pursued through an exploration/exploitation trade-off

Combinatorial Multi-Armed Bandit (CMAB)²

- At each step t the agent selects a subset of base arms (super arm) A_t ⊆ A and the rewards X^t_{at} for all a_t ∈ A_t are revealed
- the base arms belonging to A_t may probabilistically trigger other base arms not in A_t
- The reward of playing A_t, R(A_t), is a linear/non-linear combination of the rewards of the selected and triggered base arms

• The goal is to maximise the cumulative reward $R(T) = \sum_{t=1}^{T} R(A_t)$

Mandaglio Domenico and Tagarelli Andrea

²Wei Chen et al. "Combinatorial multi-armed bandit and its extension to probabilistically triggered arms." The Journal of Machine Learning Research 17.1 (2016)

Translating the DCCD problem into CMAB (I)

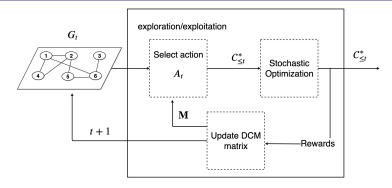
- each pair (v_i, v_j) is a base arm and its semantics is assigning the nodes to the same community at a given time
- each pair $\langle v_i, v_j \rangle$ is associated with an unknown distribution (with unknown mean μ_{ij}) for the probabilities of co-association over time (they may change), whose mean estimate is the entry m_{ij} in DCM
- A superarm A_t is a set of base arms which corresponds to a dynamic consensus community structure i.e., a set of pairs (v_i, v_j) such that c_i^(t) = c_j^(t)

Translating the DCCD problem into CMAB (II)

- Playing a superarm A_t corresponds to:
 - inducing a community structure from the played superarm
 - performing stochastic relocation of nodes to neighbor communities (trigger base arms)
- the rewards associated to the entity pairs (base arms) are revealed after the relocation phase thus **M** can be updated
- R(A_t) corresponds to the quality of the solution after the relocation phase, e.g. modularity is a non-linear combination of rewards X^t_{ii}

$$\begin{split} R(A_t) &= \frac{1}{d(\mathcal{V}_{[1..t]})} \sum_{i,j} \sum_{\ell=1}^t \beta^{t-\ell} \Big(A_{ij}^l - \frac{k_i^\ell k_j^\ell}{d(\mathcal{V}_{[1..t]})} \Big) \delta(X_{ij}^t) \\ X_{ij}^t &= 0 \text{ if } c_i^{(t)} \neq c_j^{(t)}, \ 1/|c_i^{(t)}| \text{ otherwise} \\ \delta(X_{ij}^t) &= 1 \text{ if } X_{ij}^t > 0, \ 0 \text{ otherwise} \end{split}$$

Overview of the framework



- updates: newEstimate \leftarrow oldEstimate $+ \alpha$ (newValue oldEstimate)
- exploitation/exploration: partition the DCM-graph/current snapshot
- versatile in terms of bandit strategy and the static community detection algorithm

Algorithmic scheme

Input: Temporal graph sequence $\mathcal{G}_{\leq T}$ ($T \geq 1$), bandit strategy \mathcal{B} , (static) community detection method \mathcal{A} .

Output: Dynamic consensus community structure $C^*_{< T}$.

- 1: Initialize the dynamic consensus matrix ${\bf M}$
- 2: for t = 1 to T do
- 3: if \mathcal{B} decides for EXPLORATION then
- 4: Find a community structure $C^{(t)}$ on G_t using A
- 5: else {EXPLOITATION}
- 6: Partition the DCM-graph using A
- 7: Infer a community structure $C^{(t)}$ on G_t based on the DCM-graph partitioning
- 8: end if
- 9: Project the community memberships from $C^{(t)}$ onto $\mathcal{G}_{\leq t}$
- 10: Stochastic optimization of $C^*_{< t}$
- 11: Update the DCM matrix **M** based on $C^*_{< t}$
- $12: \ \text{end for} \\$
- 13: return $C^*_{<\tau}$

Evaluation

Data:

• 5 real-world datasets and 1 synthetic network³

Evaluation goals:

- Impact of learning rate α
- Efficiency evaluation
- Comparison with competing methods:
 - DynLouvain ⁴
 - M-EMCD*⁵
 - EvoAutoLeaders ⁶

³G. Rossetti. *RDyn: graph benchmark handling community dynamics*. Journal of Complex Networks, 2017.

⁴ J. He and D. Chen. A fast algorithm for community detection in temporal network. Physica A: Stat. Mech. Appl., 429:87–94, 2015

⁵D. Mandaglio, A. Amelio, and A. Tagarelli. *Consensus Community Detection in Multilayer Networks Using Parameter-Free Graph Pruning*. In Proc. PAKDD, pages 193–205, 2018.

⁶W. Gao, W. Luo, and C. Bu. Adapting the TopLeaders algorithm for dynamic social networks. The Journal of Supercomputing, 2017.

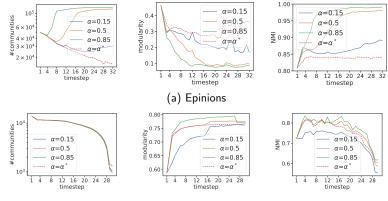
Datasets

Table: Main characteristics of our evaluation data. Mean \pm standard deviation values refer to all snapshots in a network.

	#entities	#edges	#time	node set	edge	% static	% hapax	% dynamic
	(\mathcal{V})		steps	coverage	semantics	(nodes, edges)	(nodes, edges)	(nodes, edges)
Epinions	131 828	727 344	32	0.05	trust/distrust	(0.1, 0)	(80.8, 95.6)	(19, 2.2)
Facebook	63731	17 676 817	30	0.87	friendship birth	(82.9, 2.7)	(0.2, 0)	(16.9, 1.9)
Wiki-Conflict	118 100	2 272 276	82	0.05	wikipage editing	(0, 0)	(60.1, 83.4)	(38.9, 5.8)
Wiki-Election	7 1 1 8	102 906	44	0.08	vote assignment	(0, 0)	(49.7, 95.7)	(50.3, 2.2)
YouTube	3 223 589	41 955 741	8	0.62	friendship birth	(33.4, 6.7)	(12.4, 4)	(54.2, 11.6)

	network evolution rate						
	$e_t^+ = \frac{ E_t \setminus E_{t-1} }{ E_t }$	$e_t^- = \frac{ E_{t-1} \setminus E_t }{ E_{t-1} }$	$v_t^+ = \frac{ V_t \setminus V_{t-1} }{ V_t }$	$v_t^- = \frac{ V_{t-1} \setminus V_t }{ V_{t-1} }$			
Epinions	0.97 ± 0.007	0.98 ± 0.008	0.65 ± 0.08	0.69 ± 0.06			
Facebook	0.02 ± 0.01	0	0.006 ± 0.006	0			
Wiki-Conflict	0.95 ± 0.02	0.95 ± 0.02	0.52 ± 0.1	0.51 ± 0.12			
Wiki-Election	0.99 ± 0.004	0.99 ± 0.005	0.5 ± 0.07	0.49 ± 0.08			
YouTube	0.16 ± 0.06	0	0.14 ± 0.06	0			

Impact of learning rate (I)



(b) Facebook

Figure: Size of the dynamic consensus by CreDENCE (left), multilayer modularity of the CreDENCE solutions (mid), and NMI between the CreDENCE consensus community structure and the snapshot's community structure, at each *t* (right).

Impact of learning rate (II)

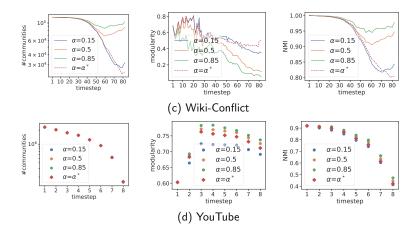


Figure: Size of the dynamic consensus by CreDENCE (left), multilayer modularity of the CreDENCE solutions (mid), and NMI between the CreDENCE consensus community structure and the snapshot's community structure, at each t (right).

CreDENCE vs competing methods

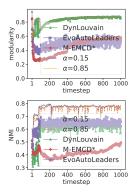


Table: Increment percentages of CreDENCE w.r.t. DynLouvain⁷ and M-EMCD^{*8}. Values correspond to the increment percentages averaged over all snapshots in a network, using the average best-performing α .

	DynLouv	ain	M-EMCD*		
	Modularity	NMI	Modularity	NMI	
Epinions	1789.0 %	-2.2 %	13.9 %	37.6%	
Facebook	3.5 %	9.4 %	60.0 %	37.5 %	
Wiki-Conflict	$> 1.0 \text{E}{+}05 \%$	-1.8 %	-6.8%	37.6 %	
Wiki-Election	660.5 %	-2.1 %	32.0 %	58.5 %	
YouTube	-0.1 %	8.4 %	21.1 %	11.6 %	
RDyn	2.0 %	24.97 %	103.22 %	81.1 %	

Fig. 4: Competitors vs. CreDENCE on RDyn: modularity (top), NMI (bottom).

- ability of dealing with temporal networks with different evolution rate
- scales linearly with the number of timesteps
- outperforms competing methods in terms of Normalized Mutual Informationand Multilayer Modularity.

Summary:

- CMAB paradigm for CD in temporal networks
- novel problem of dynamic consensus community detection
- general algorithmic scheme to solve DCCD problem

Future Works:

- the impact of different bandit strategies (e.g., UCB, Thompson sampling)
- learning the model parameters to best fit the community structure and evolution in a given temporal network

Thank you for your attention.