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Introduction
๏ Machine Learning (ML) systems achieved decision-

making power in our lives (shall we entrust them?)
๏ Input data is often (intrinsically) biased
๏ ML algorithms must avoid amplifying input data bias
๏ Disparate impact must be removed

‣ no group of individuals should (even indirectly) be discriminated by 
a decision-making system [1]
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[1] Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.:

Certifying and removing disparate impact. In: Proc. ACM KDD Conf. pp. 259–268 (2015)



Clustering a set of data objects s.t.: 
➡ Similar objects are assigned to the 

same cluster, whereas dissimilar 
objects are assigned to different 
clusters

➡ Clusters should not be dominated by 
a specific type of sensitive data class 
(e.g., people having the same sex)

The Fair Clustering Problem
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Can we tackle this problem through 
a 
correlation clustering framework?



Min-Disagreement Correlation Clustering (MIN-CC)
Given an undirected graph    with vertex set  and edge set 

,  and weights , for all edges , find a 
clustering  that minimizes:

where , resp. , denote the benefit of clustering  and  together, resp. 
separately.

G = ⟨V, E⟩ V
E ⊆ V × V w+

uv, w−
uv ∈ R+

0 (u, v) ∈ E
𝒞 : V ⟶ N+

∑
(u, v) ∈ E, 𝒞(u) = 𝒞(v)

w−
uv + ∑

(u, v) ∈ E, 𝒞(u) ≠ 𝒞(v)

w+
uv

w+
uv w−

uv u v
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Problem Statement - Notation
Let  be a set of   objects defined over a set of attributes 

divided into two sets:

•  containing fairness-aware (or sensitive) attributes (e.g., those 
identifying sex, race, religion, relationship status in a citizen database);

•  containing non-sensitive attributes (e.g., user preferences).

Both can include numerical (N) and categorical (C) attributes:
,        

𝒳 = {X1, ⋯, Xn} n
𝒜

𝒜F

𝒜¬F

𝒜F = 𝒜F
N ∪ 𝒜F

C 𝒜¬F = 𝒜¬F
N ∪ 𝒜¬F

C
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Problem Statement - Fair-CC
Given a set of objects , two sets of attributes  and , and an object similarity 
function  defined over the subspace  of the attribute set, find a clustering  
to minimize:

 

This corresponds to solving a complete Min-CC instance:
◎ The set of vertices corresponds to the objects in  and,
◎ For each pair of vertices  and , the positive-type (resp. negative-type) correlation-
clustering weight corresponds to the similarity score between the two vertices 
according to the non-sensitive (resp. sensitive) attributes. 

𝒳 𝒜F 𝒜¬F

simS( ⋅ ) S 𝒞*

∑
u,v∈𝒳, 𝒞(u)=𝒞(v)

sim𝒜F(u, v) + ∑
u,v∈𝒳, 𝒞(u)≠𝒞(v)

sim𝒜¬F(u, v)

𝒳
u v
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Utility functions

 

 

sim𝒜¬F(u, v) := ψ+(α¬F
N ⋅ sim𝒜¬F

N
(u, v) + (1 − α¬F

N ) ⋅ sim𝒜¬F
C

(u, v))
sim𝒜F(u, v) := ψ−(αF

N ⋅ sim𝒜F
N
(u, v) + (1 − αF

N) ⋅ sim𝒜F
C
(u, v))

αF
N = |𝒜F

N | /( |𝒜F
N | + |𝒜F

C | )
α¬F

N = |𝒜¬F
N | /( |𝒜¬F

N | + |𝒜¬F
C | )

ψ+ = exp( |𝒜F | /( |𝒜F | + |𝒜¬F | ) − 1)
ψ− = exp( |𝒜¬F | /( |𝒜F | + |𝒜¬F | ) − 1)
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Similarity according 
to the set of non-

sensitive and 
sensitive attributes

Weight similarities 
proportionally to the 
number of involved 

attributes

Smoothing factors to 
penalize weights that 
are computed on a 

small number of 
attributes



Solving Fair-CC
The CC-Bounds algorithm: [2]

Input: Set of objects , sensitive attributes , non-sensitive attributes 
, Min-CC algorithm A

Output: Clustering  of 

1. Compute  
2. Build the instance 

3. run A on 

𝒳 𝒜F

𝒜¬F

𝒞 𝒳

sim𝒜¬F(u, v), sim𝒜F(u, v) ∀u, v ∈ 𝒳

I = ⟨G = (𝒳, 𝒳 × 𝒳), {sim𝒜¬F(u, v), sim𝒜F(u, v)}u,v∈𝒳×𝒳⟩
𝒞 ← I
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[2] Mandaglio, D., Tagarelli, A., Gullo, F.: Correlation clustering with global weight bounds. 

In: Proc. ECML-PKDD Conf. pp. 499–515 (2021)



Theoretical remarks
Let  the running time of the algorithm A on the set of data objects 

➡ The time complexity of CCBounds is  
‣ Compute similarities over  attributes, for each pair of objects in , then solve the 

resulting Min-CC instance through A

➡ The space complexity of CC-Bounds is 
‣ In-memory similarity storing

The Min-CC algorithm A used in CC-Bounds is the one proposed in [3], as it proposes 
constant-factor approximation guarantees (under certain conditions), s.t.  

.

✓ The time complexity of CCBounds become .

TA(𝒳) 𝒳
𝒪( |𝒳 |2 |𝒜 | + TA(𝒳))

𝒜 𝒳

𝒪( |𝒳 |2 )

TA(𝒳) = 𝒪( |𝒳 |2 )

𝒪( |𝒳 |2 |𝒜 | )
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[3] Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. 
In: Proc. ACM STOC Symp. pp. 684–693 (2005)



Theorem 1 [2]

If the condition 

holds on the similarity scores and the oracle A is an -approximation 
algorithm for Min-CC, CCBounds is -approximation algorithm for Fair-CC.

( |𝒳 |
2 )

−1

(sim𝒜¬F(u, v) + sim𝒜F(u, v)) ≥ max
u,v∈𝒳

|sim𝒜¬F(u, v) − sim𝒜F(u, v) |

α
α
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[2] Mandaglio, D., Tagarelli, A., Gullo, F.: Correlation clustering with global weight bounds. 

In: Proc. ECML-PKDD Conf. pp. 499–515 (2021)



Evaluating Fairness
Focus on algorithm-independent evaluation metrics following a group-level 
approach under the disparate impact doctrine [4]

balance(𝒞) = min
C∈𝒞,b∈[m]

min {RC,b,
1

RC,b
} ∈ [0,1]

AEA(𝒞) =
∑C∈𝒞 |C | × ED(CA, 𝒳A)

∑C∈𝒞 |C |
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[4] Feldman, M., Friedler, S.A., Moeller, J., Scheidegger, C., Venkatasubramanian, S.: Certifying and removing disparate impact. 

In: Proc. ACM KDD Conf. pp. 259–268 (2015) 


[5] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. In: Proc. NIPS Conf. pp. 5029–5037 (2017)


[6] Bera, S.K., Chakrabarty, D., Flores, N., Negahbani, M.: Fair algorithms for clustering. In: Proc. NIPS Conf. pp. 4955–4966 (2019)


[7] Abraham, S.S., P, D., Sundaram, S.S.: Fairness in clustering with multiple sensitive attributes. In: Proc. EDBT Conf. pp. 287–298 (2020)
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Competing methods

๏ Fair Clustering through Fairlets [5]

๏ HST-based Fair Clustering [8]

๏ Fair Correlation Clustering [9]

๏ Based on fairlets decomposition (direct or via correlation clustering)
๏ The first two can just handle a single sensitive attribute

13

[5] Chierichetti, F., Kumar, R., Lattanzi, S., Vassilvitskii, S.: Fair clustering through fairlets. In: Proc. NIPS Conf. pp. 5029–5037 (2017)


[8] Backurs, A., Indyk, P., Onak, K., Schieber, B., Vakilian, A., Wagner, T.: Scalable fair clustering. In: Proc. ICML Conf. pp. 405–413 (2019)


[9] Ahmadian, S., Epasto, A., Kumar, R., Mahdian, M.: Fair correlation clustering. In: Proc. AISTATS Conf. pp. 4195–4205 (2020)



Data
๏ Publicly available real-world relational datasets
๏ Focus on a smaller subset of the original attributes
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Evaluation goals

, 

inter(𝒜¬F) =
1

|Θ | ∑
u,v∈Θ

sim𝒜¬F(u, v)

inter(𝒜F) =
1

|Θ | ∑
u,v∈Θ

sim𝒜F(u, v)

intra(𝒜¬F) =
1

|Ω | ∑
u,v∈Ω

sim𝒜¬F(u, v)

intra(𝒜F) =
1

|Ω | ∑
u,v∈Ω

sim𝒜F(u, v)

Ω = {u, v ∈ 𝒳 | 𝒞(u) = 𝒞(v)} Θ = {u, v ∈ 𝒳 | 𝒞(u) ≠ 𝒞(v)}
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* https://www.eneagrid.enea.it

Running times were measured while 
executing on the Cresco6 cluster*

https://www.eneagrid.enea.it


Hyper-params and Configurations
๏ Random sampling of the original data
‣ 1k/10k tuples which preserve some desired 

ratio between the protected classes
๏ Specification of p and q parameters
‣ p/q  represents the minimum balance 

required by each cluster
๏ Minimum shared requirements, e.g., single 

and binary sensitive attribute
๏ Number of clusters k as the (rounded) avg. 

number of clusters returned by CCBounds in 
ten iterations
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Results - Balance
๏ “Fairness-native” methods                             

yield better balance scores
๏ CCBounds is aligned with its direct 

competing method in most cases 
๏ On small yet heavily unbalanced datasets 

(i.e., CreditCard-1k with an 80:20 ratio), 
CCBounds achieves the second-best 
score, while other competing methods 
struggle

๏ Overall, the balance obtained by 
CCBounds in all evaluation scenarios 
ranges from 0.45 to 0.613
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Results - Average Euclidean Fairness

๏ CCBounds obtains very good scores 
under different scenarios

๏ Among the best-performing 
approaches for the Adult-1k, Adult-
Full and Bank-1k datasets

๏ Outperforms all the other methods by 
an order of magnitude on Bank-10k 
and Bank-Full

๏ Performances worsen while 
considering the remaining datasets
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Results - Similarities
๏ On the sensitive attributes,        

CCBounds tends to group a few       
more objects with the same sensitive 
attribute value than the other 
methods

๏ CCBounds is still able to properly 
separate the objects into clusters, 
when accounting for the sensitive 
attribute

๏ CCBounds achieves the best 
performance in all the considered 
evaluation scenarios when 
considering non-sensitive attributes
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Results - Running Times

๏ FAIRLETS, HST-FC and 
CCBounds guarantee reasonable 
running times

๏ CCBounds overcomes its direct 
competing method SIGNED

‣ Parallelized pairwise similarity 
computation

‣ Abnormal number of clusters for 
SIGNED
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Conclusions
๏ We assessed how correlation clustering can handle fair clustering
๏ Experimental evidence that CCBounds may serve as a good trade-

off between the traditional and fairness-aware clustering conditions
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Future Work
๏ Alternative definitions of the similarity functions
๏ Generalization of CCBounds to 
‣Multiple protected values
‣Multiple sensitive attributes with many values



Thanks!
Any questions?

You can find me at:
 https://luciolcv.github.io/
 lucio.lacava@dimes.unical.it
 @luciolcw
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