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Main Contribu,ons

• Novel formula,on of Correla,on Clustering (CC) within a 
reinforcement learning se8ng by designing a Combinatorial 
Mul,-Armed Bandit (CMAB) framework for correla,on clustering
• The CMAB-CC problem

• Design and theore,cal analysis of algorithms 
• We devise a principled regret defini;on for our problem

• Extensive experimental evalua,on



Min-Disagreement Correlation Clustering 
(Min-CC) 

Input: 
• an undirected graph 𝐺 = (𝑉, 𝐸), with vertex set 𝑉 and edge set 𝐸 ⊆ 𝑉×𝑉
• weights 𝑤!"# , 𝑤!"$ ∈ ℝ%# for all edges 𝑢, 𝑣 ∈ 𝐸, where any 𝑤!"#  (resp. 𝑤!"$ ) weight 

expresses the benefit of clustering 𝑢 and 𝑣 together (resp. separately)
Output: 
• a clustering 𝒞∗: 𝑉 → ℕ#	that:

𝒞∗ =	argmin𝒞	𝑑 𝒞 = 	 argmin𝒞 	 ;
(!,")∈-
𝒞 ! .𝒞(")

𝑤!"$ + ;
(!,")∈-
𝒞 ! /𝒞(")

𝑤!"#



Correlation Clustering with Unknown Edge 
Weights

• Traditionally, in correlation clustering it is assumed that the edge 
weights are all given as input, e.g. derived from past user-
interaction history, experimental trials etc.
• Disadvantage: clustering has to be performed after that all the weights 

are available 

• We focus for the first time on a correlation-clustering setting 
where the edge weights are not available and edge-weight 
assessment is carried out while performing (multiple rounds of) 
clustering 



Correlation Clustering with Unknown Edge 
Weights

u v

Inter-cluster
cost 𝑊!"#

Intra-cluster
cost 𝑊!"$

Edge weights 𝑤!"$ , 𝑤!"#  are modeled as 
random variables 𝑊!"$ , 𝑊!"#  with means 

𝜇!"$ = 𝔼 𝑊!"$ , 	𝜇!"# = 𝔼[𝑊!"# ]



Correlation Clustering with Unknown Edge 
Weights

Random variables 𝑊!"$ , 𝑊!"#  and their 
means 𝜇!"$ = 𝔼 𝑊!"$ , 	𝜇!"# = 𝔼[𝑊!"# ] are 

unknown 
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Correlation Clustering with Unknown Edge 
Weights

u v

Inter-cluster
cost estimate �̂�!"#  

Intra-cluster
cost estimate �̂�!"$  

Es2mates of the mean of the edge-
weight distribu:ons �̂�!"$ , �̂�!"#  are 
maintained for each 𝑢, 𝑣 ∈ 𝐸



Correla,on Clustering with Unknown Edge 
Weights

u v

Inter-cluster
cost estimate �̂�!"#  

Intra-cluster
cost estimate �̂�!"$  

Estimates of the mean of the edge-
weight distributions �̂�!"$ , �̂�!"#  are 
maintained for each 𝑢, 𝑣 ∈ 𝐸

(i) Use an oracle 𝓞 (CC algorithm) 
with estimated weights to 
compute a clustering 



Correla,on Clustering with Unknown Edge 
Weights
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(i) Use an oracle 𝓞 (CC algorithm) 
with estimated weights to 
compute a clustering 

(ii) Placing the clustering gives 
feedback about the unknown 
edge weights 𝑊!"$ , 𝑊!"#  and the 
quality of the clustering 



Correlation Clustering with Unknown Edge 
Weights

u v

Inter-cluster
cost es:mate �̂�!"#  

Intra-cluster
cost estimate �̂�!"$  

(i) Use an oracle 𝓞 (CC algorithm) 
with estimated weights to 
compute a clustering 
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(iii) Update the mean 
estimates �̂�!"$ , �̂�!"#  
and repeat from (i) 
for 𝑇 rounds

(ii) Placing the clustering gives 
feedback about the unknown 
edge weights 𝑊!"$ , 𝑊!"#  and the 
quality of the clustering 

Estimates of the mean of the edge-
weight distributions �̂�!"$ , �̂�!"#  are 
maintained for each 𝑢, 𝑣 ∈ 𝐸



Applications

• Team formation
• Recommendations in online social platforms
• Task allocation
• Commercial scheduling in slots
• Shelf space allocation



The CMAB-MIN-CC Problem

Given a graph 𝐺 = (𝑉, 𝐸) and a number 𝑇 > 0 of rounds, for every 
𝑡 = 1,… , 𝑇 find a clustering 𝒞!	 : 𝑉 → ℕ#	 so as to minimize 

𝔼 3
!$%

&

�̅�𝝁 𝒞!

�̅�𝝁 𝒞>  is the expected disagreement (cost) of the clustering 𝒞> according to the true 

(unknown) means 𝝁 = 𝜇!"# (!,")∈-, 𝜇!"$ (!,")∈-  



Exploration-Exploitation Trade-Off

A clustering at every round may be computed 
1. by taking into account the current mean estimates based on an 

approximate oracle (exploitation) 
2. without looking at the mean estimates, so as to get feedback on 

edge weights for which limited knowledge has been acquired so 
far (exploration) 

Objective: getting the best exploration-exploitation tradeoff whose 
effectiveness is measured by the (expected) cumulative quality of 
the clusterings produced in all the rounds. 



• 𝒜 is the set of 𝑚 base slot-machines/arms to choose from

• Each arm 𝑖 is assigned a set 𝑋!,#|	1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑡 ≤ 𝑇  of random variables 
where each	𝑋!,# indicates the random “outcome” of playing base arm 𝑖 in 
round 𝑡. 

• At each step 𝑡 the agent selects/plays a subset of base arms (super arm)  
𝐴# ⊆ 𝒜 and the outcomes of the random variables 𝑋!,#, for all the base arms 
𝑗 ∈ 𝐴#, are observed.

• Playing a superarm 𝐴# gives a reward 𝑅#(𝐴#), which is a random variable 
defined as a function of the outcomes of 𝐴#’s base arms.

• It is assumed the availability of an (𝜶, 𝜷)-approximation oracle that, for 
some 𝛼, 𝛽 ≤ 1, it outputs a superarm 𝐴# so that                          
Pr 𝔼 :𝑅# 𝐴# ≥ 𝛼𝔼 :𝑅# 𝐴#∗ ≥ 𝛽

• The goal is to maximize the (expected) cumulative reward 𝔼 ∑#%&' 𝑅#(𝐴#)  by 
a proper exploration/exploitation trade-off 

arm 1

arm 2

arm 3

Combinatorial Mul,-Armed Bandit3 (CMAB)

super arm

3. Chen Wei et al. "Combinatorial multi-armed bandit and its extension to probabilistically triggered arms." The Journal of Machine Learning Research 17.1 (2016): 1746-1778.



CMAB-MIN-CC as a CMAB instance

• base arms: each edge 𝑒 = 𝑢, 𝑣 ∈ 𝐸 has a pair of replicas, 𝑒() and 
𝑒*+!  (𝑚 = |𝒜| = 2|𝐸|)
• superarms: sets 𝐴 ⊆ 𝒜 that are consistent with the notion of 

clustering
• for all 𝑒 ∈ 𝐸, 𝐴 only contains 𝑒?@ or 𝑒A!> ( 𝐴 = |𝐸|)
• for all 𝑒B = 𝑥, 𝑦 , 𝑒C = 𝑦, 𝑧 , 𝑒D = 𝑥, 𝑧 ∈ 𝐸, if 𝑒B?@, 𝑒C?@ ∈ 𝐴, then 𝑒D?@ ∈ 𝐴

• base-arm outcome:
• Intra-cluster base arm 𝑒?@: a sample from	𝑊!"$
• Inter-cluster base arm 𝑒A!>: a sample from 𝑊!"#

• loss: 𝑑 𝐴 = ∑,∈.!"𝑊+/
0 + ∑,∈.#$%𝑊+/

#



Algorithms for CMAB-MIN-CC

Adaptation of well-established CMAB algorithms to the correlation-
clustering context:
1. focus on the context of general oracles for MIN-CC
2. case where the employed MIN-CC oracles achieve theoretical 

guarantees only if the input (unknown) weights meet certain 
properties

3. the special case of input edge-weight distributions satisfying 
specific constraints



The Correlation Clustering - Combinatorial 
Lower Confidence Bound (CC-CLCB) algorithm



Initialization of the mean 
estimates E𝝁#, E𝝁$and counters 
𝑇%#, 𝑇%$ which denote the 
number of times a sample from 
𝑊%#,𝑊%$ has been observed

The Correla;on Clustering  - Combinatorial 
Lower Confidence Bound (CC-CLCB) algorithm



The Correla;on Clustering - Combinatorial Lower 
Confidence Bound (CC-CLCB) algorithm

the current mean estimates 
are adjusted with the terms 
𝜌%#, 𝜌%$, so as to foster the 
exploration of less often 
played base arms



The Correlation Clustering - Combinatorial 
Lower Confidence Bound (CC-CLCB) algorithm

The adjusted means
G𝜇%#, G𝜇%$ %∈'  are interpreted as 

edge weights of a correlation-
clustering instance and are fed 
as input to an oracle O that 
computes a MIN-CC solution 𝒞(



The Correlation Clustering - Combinatorial 
Lower Confidence Bound (CC-CLCB) algorithm

Placing the clustering 𝒞( gives 
a feedback about the 
unknown	𝑊%#, 𝑊%$:
• Intra-cluster edge: a sample 

from	𝑊%$
• Inter-cluster edge: a sample 

from 𝑊%#
The yielded samples are used 
to update the mean estimates 
E𝝁#, E𝝁$



Regret Analysis of CC-CLCB algorithm

MIN-CC-(𝜶, 𝜷)-approxima4on regret. Let 𝒞1∗ be the clustering 
minimizing the expected loss �̅�𝝁 ⋅  on a CMAB-MIN-CC instance 𝐼, let 
ℳ be the the expected loss of the worst possible clustering on 𝐼.

𝑅𝑒𝑔𝝁,4,5 𝑇 = 𝔼 3
!$%

&

�̅�𝝁 𝒞! − 𝑇
1
𝛼
𝛽�̅�𝝁 𝒞1∗ + 1 − 𝛽 ℳ

Theorem. Given 𝛼, 𝛽 ∈ (0,1], the MIN-CC-(𝛼, 𝛽)-approxima,on regret 
of the CC-CLCB algorithm, when equipped with a MIN-CC-(𝛼, 𝛽)-
approxima,on oracle is upper-bounded by a func,on of 𝑇 that is  
𝒪(log 𝑇).



Heuris,c Variants of CC-CLCB

Rationale. Favor the fulfilment of some constraints on the MIN-CC 
instances to be processed by the oracle to make the latter perform 
better
• PC+Exp-CLCB computes the adjusted means R𝜇+/# , R𝜇+/0  such that 

the local constraint R𝜇+/# + R𝜇+/0 = 1 holds for every 𝑢, 𝑣 ∈ 𝑉
• Global-CLCB computes the adjusted means R𝜇+/# , R𝜇+/0  such that the 

global constraint 6
7

0%
∑+,/∈6 R𝜇+/# + R𝜇+/0 ≥ 1 is satisfied



Special Edge-Weight Distributions

Symmetric distributions. [0, 1]-support random variables 𝑊,#,𝑊,0 
have symmetric distributions if and only if 𝑊,# 𝑥 = 𝑊,0(1 − 𝑥), 
for all 𝑥 ∈ 0,1 .

Theorem. Given 𝛼, 𝛽 ∈ (0,1], the MIN-CC-(𝛼, 𝛽)-approximation 
regret of a pure exploitation (PE) strategy run on a CMAB-MIN-CC 
instance where all edge-weight distributions are symmetric, and 
equipped with a MIN-CC-(𝛼, 𝛽)-approximation oracle is upper-
bounded by a function of 𝑇 that is 𝒪(1).



Evaluation

Data
• Real network data with artificially-generated edge weights
Assessment criteria
• Average expected normalized cumulative MIN-CC loss (up to round 𝑡) 𝑓(>) 

w.r.t. the true (unknown) edge weights	𝝁:

𝑓(>) =
1
𝑡
;

?.B

>
𝔼
�̅�𝝁 𝒞?
𝑈

, 	 𝑈 = ;
!,"∈I

max 𝜇!"# , 𝜇!"$

• Relative error norm (at round 𝑡) 𝑟𝑒𝑛(>):



Evaluation

Evalua4on goals
• Assess the performance of the CMAB methods (CC-CLCB, EG, EG-

fixed, PE, CTS1) in terms of 𝑓(&) and 𝑟𝑒𝑛(&) and compare them to 
non-CMAB baselines (Adamic-Adar, Jaccard) and the reference 
Actual-weight method 
• Evaluate the impact of varying the MIN-CC oracle (Pivot2, LP+R3) 

on the performance of the various CMAB methods 

1. Wang Siwei, and Wei Chen. "Thompson sampling for combinatorial semi-bandits." InternaOonal Conference on Machine Learning. PMLR, 2018. 
2. Ailon Nir, Moses Charikar, and Alantha Newman. "AggregaOng inconsistent informaOon: ranking and clustering." Journal of the ACM (JACM) 55.5 (2008): 1-27.
3. Charikar Moses, Venkatesan Guruswami, and Anthony Wirth. "Clustering with qualitaOve informaOon." Journal of Computer and System Sciences 71.3 (2005): 360-383.



Data
Table: Main characteristics of the real-world datasets used in our evaluation. 

Edge weight generation. The random variables 𝑊%#, 𝑊%$ are assumed to follow a Bernoulli distribution, 
whose means are generated according to a scheme which ensures that the probability constraint holds 
on the generated means, i.e. first sample 𝜇%#~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1), and then set 𝜇%$ = 1 − 𝜇%#, for all 𝑒 ∈ 𝐸.



Quality of the clusterings

• The loss values of all the CMAB methods follow a decreasing trend over the rounds since the CMAB 
algorithms learn how to cluster the vertices over time 

• The non-CMAB baselines (Adamic-Adar, Jaccard) achieve the worst performance, Actual-weight is 
always the best method, the CMAB methods perform comparably or close to Actual-weight 

(a) Karate (b) Highland-Tribes (c) C-USA



Quality of the clusterings

Table. Performance in terms of 𝑓(𝑇) and growth rate (average amount of relative change between the initial and the final round over 
the span T, in percentage). All methods are equipped with Pivot as MIN-CC oracle.

• PE is the best-performing method since the adopted MIN-CC oracle (i.e., Pivot) is a randomized algorithm, 
thus, although with a pure-exploitation bandit strategy, it results in some implicit exploration

• CC-CLCB is comparable or close to the best methods in most cases



Quality of the learned edge weights

Table. Performance in terms of 𝑟𝑒𝑛(") and growth rate (average amount of relative change between the initial and the final round over 
the span T, in percentage). All methods are equipped with Pivot as MIN-CC oracle.

• the non-CMAB baselines yield the highest error values, while Actual-weight clearly achieves zero error 
everywhere 

• EG-fixed is (comparable to) the best performer on the smaller datasets (Karate, Dolphins, Zebra, 
HighlandTribes, Contiguous-USA), while on the bigger datasets, CTS is (comparable to) the best method 



Varying the MIN-CC oracle

• The general trend in terms of clustering quality is that LP+R leads to 
an increase in performance at the cost of higher running ,mes
• The best performing method in terms of clustering quality is:
• PE when equipped with Pivot
• CTS when equipped with LP+R

• In terms of learned edge weights the advantage of using LP+R is less 
evident due to the high randomiza,on of Pivot
• The best performing method in terms of edge weights es,ma,on is:
• EG-fixed when equipped with Pivot
• CLCB when equipped with LP+R



Conclusion & Future Work

Summary:
• we have focused on the novel setting of correlation clustering where edge 

weights are unknown, and they need be discovered while performing 
multiple rounds of clustering. 

• we have provided a Combinatorial Multi-Armed Bandit (CMAB) 
framework for correlation clustering, algorithms for it, analyses of the 
theoretical guarantees of these algorithms, more practical heuristics, and 
extensive experiments. 

Future Work:
• we plan to investigate the theoretical properties of our heuristics, 

advanced CMAB settings, and clustering problems other than correlation 
clustering 



Thank you!
Questions?





Related Work

Query-efficient correlation clustering1,2

• edge weights are discovered by querying an oracle 
• the goal is to cluster the input graph by using a limited budget of 𝑄 queries 

(𝑄 ≪ 𝑂( 𝑉 C))
• the oracle provides true edge weights for any query, at any time. Instead, in 

our setting, the feedback consists in a sample of the weight distributions 
• existing approaches handle binary weights only (i.e., 𝑤!"# , 𝑤!"$ ∈ {0, 1}) 

1. Bressan M, Cesa-Bianchi N, Paudice A, Vitale F (2019) Correla@on clustering with adap@ve similarity  queries. In: Proceedings 
of the NIPS conference, pp. 12531–12540.

2. García-Soriano D, Kutzkov K, Bonchi F, Tsourakakis C (2020) Query-efficient correla@on clustering. In Proceedings of the WWW 
conference, pp 1468–1478.

.


