

**The views and opinions expressed in this paper are those of the author and do not necessarily reflect the official policy or position of the UniCredit group.*

A Combinatorial Multi-Armed Bandit Approach to Correlation Clustering

Francesco Gullo*, Domenico Mandaglio, Andrea Tagarelli

Rome, Italy **Rende (CS)**, Italy **Rende (CS)**, Italy **Rende (CS)**, Italy

UniCredit DIMES – Univ. Calabria DIMES – Univ. Calabria

Main Contributions

- Novel formulation of Correlation Clustering (CC) within a reinforcement learning setting by designing a Combinatorial Multi-Armed Bandit (CMAB) framework for correlation clustering
	- The CMAB-CC problem
- Design and theoretical analysis of algorithms
	- We devise a principled regret definition for our problem
- Extensive experimental evaluation

Min-Disagreement Correlation Clustering (Min-CC)

Input:

- an *undirected* graph $G = (V, E)$, with vertex set V and edge set $E \subseteq V \times V$
- weights w_{uv}^+ , $w_{uv}^- \in \mathbb{R}_0^+$ for all edges $(u, v) \in E$, where any w_{uv}^+ (resp. w_{uv}^-) weight expresses the benefit of clustering u and v together (resp. separately)

Output:

• a *clustering* C^* : $V \rightarrow \mathbb{N}^+$ that:

$$
C^* = \operatorname{argmin}_{C} d(C) = \operatorname{argmin}_{C} \sum_{\substack{(u,v)\in E\\C(u)=C(v)}} w_{uv}^- + \sum_{\substack{(u,v)\in E\\C(u)\neq C(v)}} w_{uv}^+
$$

- Traditionally, in correlation clustering it is assumed that the *edge weights are all given as input*, e.g. derived from past userinteraction history, experimental trials etc.
	- Disadvantage: clustering has to be performed after that all the weights are available
- We focus for the first time on a correlation-clustering setting where *the edge weights are not available and edge-weight assessment is carried out while performing (multiple rounds of) clustering*

Edge weights w_{uv}^- , w_{uv}^+ are modeled as r andom variables W_{uv}^- , W_{uv}^+ with means $\mu_{uv}^- = \mathbb{E}[W_{uv}^-]$, $\mu_{uv}^+ = \mathbb{E}[W_{uv}^+]$

Random variables W_{uv}^+ , W_{uv}^+ and their means $\mu_{uv}^- = \mathbb{E}[W_{uv}^-]$, $\mu_{uv}^+ = \mathbb{E}[W_{uv}^+]$ are **unknown**

Inter-cluster cost estimate $\hat{\mu}^+_{uv}$ cost estimate $\hat{\mu}_{uv}^-$ cost estimate $\hat{\mu}_{u}^+$ Intra-cluster \$

Estimates of the mean of the edgeweight distributions $\hat{\mu}^-_{uv}$, $\hat{\mu}^+_{uv}$ are maintained for each $(u, v) \in E$

(i) Use an oracle O (CC algorithm) with estimated weights to compute a clustering

Inter-cluster cost estimate $\hat{\mu}^+_{uv}$ cost estimate $\hat{\mu}_{uv}^-$ cost estimate $\hat{\mu}_{u}^+$ Intra-cluster \$

Estimates of the mean of the edgeweight distributions $\hat{\mu}_{uv}^-$, $\hat{\mu}_{uv}^+$ are maintained for each $(u, v) \in E$

(i) Use an oracle O (CC algorithm) with estimated weights to compute a clustering

Inter-cluster cost estimate $\hat{\mu}^+_{uv}$ cost estimate $\hat{\mu}_{uv}^-$ cost estimate $\hat{\mu}_{u}^+$ Intra-cluster \$

Estimates of the mean of the edgeweight distributions $\hat{\mu}_{uv}^-$, $\hat{\mu}_{uv}^+$ are maintained for each $(u, v) \in E$

(ii) Placing the clustering gives *feedback* about the unknown edge weights W_{uv}^- , W_{uv}^+ and the quality of the clustering

(i) Use an oracle O (CC algorithm) with estimated weights to compute a clustering

Inter-cluster cost estimate $\hat{\mu}^+_{uv}$ cost estimate $\hat{\mu}_{uv}^-$ cost estimate $\hat{\mu}_{u}^+$

Estimates of the mean of the edgeweight distributions $\hat{\mu}_{uv}^-$, $\hat{\mu}_{uv}^+$ are maintained for each $(u, v) \in E$

 \overline{w} v

\$

Intra-cluster

(iii) Update the mean estimates $\hat{\mu}^-_{uv}$, $\hat{\mu}^+_{uv}$ $+$ and repeat from (i) for *rounds*

(ii) Placing the clustering gives *feedback* about the unknown edge weights W_{uv}^- , W_{uv}^+ and the quality of the clustering

Applications

- Team formation
- Recommendations in online social platforms
- Task allocation
- Commercial scheduling in slots
- Shelf space allocation

The CMAB-MIN-CC Problem

Given a graph $G = (V, E)$ and a number $T > 0$ of rounds, for every $t = 1, ..., T$ find a clustering $C_t: V \to \mathbb{N}^+$ so as to minimize

$$
\mathbb{E}\left[\sum_{t=1}^T \bar{d}_{\mu}(\mathcal{C}_t)\right]
$$

 $\bar{d}_{\mu}(\mathcal{C}_t)$ is the expected disagreement (cost) of the clustering \mathcal{C}_t according to the true (unknown) means $\mu = \big\{ \{\mu_{uv}^+\}_{(u,v) \in E}, \{\mu_{uv}^-\}_{(u,v) \in E} \big\}$

Exploration-Exploitation Trade-Off

A clustering at every round may be computed

- 1. by taking into account the current mean estimates based on an *approximate oracle* (*exploitation*)
- 2. without looking at the mean estimates, so as to get feedback on edge weights for which limited knowledge has been acquired so far (*exploration*)

Objective: getting the best *exploration-exploitation tradeoff* whose effectiveness is measured by the (expected) *cumulative quality of the clusterings produced in all the rounds*.

Combinatorial Multi-Armed Bandit³ (CMAB)

- $\mathcal A$ is the set of m base slot-machines/arms to choose from
- Each arm *i* is assigned a set $\{X_{i,t} | 1 \le i \le m, 1 \le t \le T\}$ of random variables where each $X_{i,t}$ indicates the random "outcome" of playing base arm *i* in round t .
- At each step t the agent selects/plays a *subset of base arms* (super arm) $A_t \subseteq A$ and the outcomes of the random variables $X_{i,t}$, for all the base arms $j \in A_t$, are observed.
- Playing a superarm A_t gives a reward $R_t(A_t)$, which is a random variable defined as a function of the outcomes of A_t 's base arms.
- It is assumed the availability of an (α,β) -approximation oracle that, for some α , $\beta \leq 1$, it outputs a superarm A_t so that $\Pr\left[\mathbb{E}[\hat{R}_t(A_t)] \ge \alpha \mathbb{E}[\hat{R}_t(A_t^*)]\right] \ge \beta$
- The goal is to maximize the (expected) cumulative reward $\mathbb{E}[\sum_{t=1}^{T} R_t(A_t)]$ by a proper exploration/exploitation trade-off

CMAB-MIN-CC as a CMAB instance

- *base arms*: each edge $e = (u, v) \in E$ has a pair of replicas, e^{in} and e^{out} (m = $|\mathcal{A}| = 2|E|$)
- *superarms*: sets $A \subseteq \mathcal{A}$ that are consistent with the notion of clustering
	- for all $e \in E$, A only contains e^{in} or e^{out} ($|A| = |E|$)
	- for all $e_1 = (x, y)$, $e_2 = (y, z)$, $e_3 = (x, z) \in E$, if e_1^{in} , $e_2^{in} \in A$, then $e_3^{in} \in A$
- *base-arm outcome*:
	- *Intra-cluster base arm* e^{in} *:* a sample from W_{uv}^-
	- *Inter-cluster base arm* e^{out} *:* a sample from W_{uv}^+
- loss: $d(A) = \sum_{e \in A} i_n W_{uv}^- + \sum_{e \in A} o_{ut} W_{uv}^+$

Algorithms for CMAB-MIN-CC

Adaptation of well-established CMAB algorithms to the correlationclustering context:

- 1. focus on the context of *general oracles* for MIN-CC
- 2. case where the employed MIN-CC oracles achieve theoretical guarantees only if the input (unknown) weights meet certain properties
- 3. the special case of input edge-weight distributions satisfying specific constraints

The Correlation Clustering - Combinatorial Lower Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph $G = (V, E)$; an integer $T > 0$; an oracle O for MIN-CC **Output:** A clustering C_t of G, for all $t = 1, ..., T$ 1: initialize $\hat{\mu}^+ = \{\hat{\mu}_e^+\}_{e \in E}$ and $\hat{\mu}^- = \{\hat{\mu}_e^-\}_{e \in E}$; $\forall e \in E$: $T_e^+ \leftarrow 0, T_e^- \leftarrow 0$ 2: for $t = 1, ..., T$ do $\forall e \in E: \rho_e^+ \leftarrow \sqrt{\frac{3 \ln t}{2T_c^+}}, \ \rho_e^- \leftarrow \sqrt{\frac{3 \ln t}{2T_c^-}} (\rho_e^+ = 0, \text{ if } T_e^+ = 0; \rho_e^- = 0, \text{ if } T_e^- = 0)$ $3:$ $\forall e \in E{:} \ \widetilde{\mu}_e^+ \leftarrow \max\{\hat{\mu}_e^+ - \rho_e^+, 0\}, \ \ \widetilde{\mu}_e^- \leftarrow \max\{\hat{\mu}_e^- - \rho_e^-, 0\}$ $4:$ $\mathcal{C}_t \leftarrow$ run **O** on input $\langle G, {\{\widetilde\mu}_e^+\}_{e \in E}, {\{\widetilde\mu}_e^-\}_{e \in E} \rangle$ $5:$ for $e = (u, v) \in E \mid C_t(u) = C_t(v)$ do $6:$ observe feedback $w^- \sim W_e^-$; $\hat{\mu}_e^- \leftarrow (\hat{\mu}_e^- T_e^- + w^-)/(T_e^- + 1)$; $T_e^- \leftarrow T_e^- + 1$; $7:$ $8:$ end for $9:$ for $e = (u, v) \in E \mid C_t(u) \neq C_t(v)$ do observe feedback $w^+ \sim W_e^+$; $\hat{\mu}_e^+ \leftarrow (\hat{\mu}_e^+ T_e^+ + w^+)/(T_e^+ + 1)$; $T_e^+ \leftarrow T_e^+ + 1$; $10:$ $11:$ end for $12:$ end for

The Correlation Clustering - Combinatorial Lower Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph $G = (V, E)$; an integer $T > 0$; an oracle O for MIN-CC **Output:** A clustering C_t of G, for all $t = 1, ..., T$ 1: initialize $\hat{\mu}^+ = \{\hat{\mu}_e^+\}_{e \in E}$ and $\hat{\mu}^- = \{\hat{\mu}_e^-\}_{e \in E}$; $\forall e \in E$: $T_e^+ \leftarrow 0, T_e^- \leftarrow 0$ 2: for $t=1,\ldots,T$ do $\forall e \in E: \rho_e^+ \leftarrow \sqrt{\frac{3 \ln t}{2 T_c^+}}, \ \rho_e^- \leftarrow \sqrt{\frac{3 \ln t}{2 T_c^-}} (\rho_e^+ = 0, \text{ if } T_e^+ = 0; \rho_e^- = 0, \text{ if } T_e^- = 0)$ $3:$ $\forall e \in E: \tilde{\mu}_e^+ \leftarrow \max{\{\hat{\mu}_e^+ - \rho_e^+, 0\}}, \quad \tilde{\mu}_e^- \leftarrow \max{\{\hat{\mu}_e^- - \rho_e^-, 0\}}$ $4:$ $\mathcal{C}_t \leftarrow$ run **O** on input $\langle G, {\{\widetilde\mu}_e^+\}_{e \in E}, {\{\widetilde\mu}_e^-\}_{e \in E} \rangle$ $5:$ for $e = (u, v) \in E \mid C_t(u) = C_t(v)$ do $6:$ observe feedback $w^- \sim W_e^-$; $\hat{\mu}_e^- \leftarrow (\hat{\mu}_e^- T_e^- + w^-)/(T_e^- + 1)$; $T_e^- \leftarrow T_e^- + 1$; $7:$ $8:$ end for $9:$ for $e = (u, v) \in E \mid C_t(u) \neq C_t(v)$ do observe feedback $w^+ \sim W_e^+$; $\hat{\mu}_e^+ \leftarrow (\hat{\mu}_e^+ T_e^+ + w^+)/(T_e^+ + 1)$; $T_e^+ \leftarrow T_e^+ + 1$; $10:$ $11:$ end for $12:$ end for

Initialization of the mean estimates $\hat{\mu}^+$, $\hat{\mu}^-$ and counters T_e^+ , T_e^- which denote the number of times a sample from W_e^+ , W_e^- has been observed

The Correlation Clustering - Combinatorial Lower Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph $G = (V, E)$; an integer $T > 0$; an oracle O for MIN-CC **Output:** A clustering C_t of G, for all $t = 1, ..., T$ 1: initialize $\hat{\mu}^+ = \{\hat{\mu}_e^+\}_{e \in E}$ and $\hat{\mu}^- = \{\hat{\mu}_e^-\}_{e \in E}$; $\forall e \in E$: $T_e^+ \leftarrow 0, T_e^- \leftarrow 0$ 2: for $t = 1, ..., T$ do 3: $\forall e \in E: \rho_e^+ \leftarrow \sqrt{\frac{3 \ln t}{2T_e^+}}, \ \rho_e^- \leftarrow \sqrt{\frac{3 \ln t}{2T_e^-}} (\rho_e^+ = 0, \text{ if } T_e^+ = 0; \rho_e^- = 0, \text{ if } T_e^- = 0)$ 4: $\forall e \in E: \tilde{\mu}_e^+ \leftarrow \max\{\hat{\mu}_e^+ - \rho_e^+, 0\}, \ \tilde{\mu}_e^- \leftarrow \max\{\hat{\mu}_e^- - \rho_e^-, 0\}$ $\mathcal{C}_t \leftarrow \text{run } \mathbf{O}$ on input $\langle G, \{\widetilde{\mu}_e^+\}_{e \in E}, \{\widetilde{\mu}_e^-\}_{e \in E} \rangle$ $5:$ for $e = (u, v) \in E \mid C_t(u) = C_t(v)$ do $6:$ observe feedback $w^- \sim W_e^-$; $\hat{\mu}_e^- \leftarrow (\hat{\mu}_e^- T_e^- + w^-)/(T_e^- + 1)$; $T_e^- \leftarrow T_e^- + 1$; $7:$ $8:$ end for $9:$ for $e = (u, v) \in E \mid C_t(u) \neq C_t(v)$ do observe feedback $w^+ \sim W_e^+$; $\hat{\mu}_e^+ \leftarrow (\hat{\mu}_e^+ T_e^+ + w^+)/(T_e^+ + 1)$; $T_e^+ \leftarrow T_e^+ + 1$; $10:$ $11:$ end for 12: end for

the current mean estimates are adjusted with the terms ρ_e^+ , ρ_e^- , so as to foster the exploration of less often played base arms

The Correlation Clustering - Combinatorial Lower Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph $G = (V, E)$; an integer $T > 0$; an oracle O for MIN-CC **Output:** A clustering C_t of G, for all $t = 1, ..., T$ 1: initialize $\hat{\mu}^+ = \{\hat{\mu}_e^+\}_{e \in E}$ and $\hat{\mu}^- = \{\hat{\mu}_e^-\}_{e \in E}$; $\forall e \in E$: $T_e^+ \leftarrow 0, T_e^- \leftarrow 0$ 2: for $t = 1, ..., T$ do $\forall e \in E: \rho_e^+ \leftarrow \sqrt{\frac{3 \ln t}{2T_c^+}}, \ \rho_e^- \leftarrow \sqrt{\frac{3 \ln t}{2T_c^-}} (\rho_e^+ = 0, \text{ if } T_e^+ = 0; \rho_e^- = 0, \text{ if } T_e^- = 0)$ $3:$ $\forall e \in E{:} \ \widetilde{\mu}_e^+ \leftarrow \max\{\hat{\mu}_e^+ - \rho_e^+, 0\}, \ \ \widetilde{\mu}_e^- \leftarrow \max\{\hat{\mu}_e^- - \rho_e^-, 0\}$ $4:$ $\mathcal{C}_t \leftarrow$ run **O** on input $\langle G, {\{\widetilde\mu}_e^+\}_{e \in E}, {\{\widetilde\mu}_e^-\}_{e \in E} \rangle$ $5:$ for $e = (u, v) \in E \mid \mathcal{C}_t(u) = \mathcal{C}_t(v)$ do $\overline{6}$. observe feedback $w^- \sim W_e^-$; $\hat{\mu}_e^- \leftarrow (\hat{\mu}_e^- T_e^- + w^-)/(T_e^- + 1)$; $T_e^- \leftarrow T_e^- + 1$; $7:$ $8:$ end for $9:$ for $e = (u, v) \in E \mid C_t(u) \neq C_t(v)$ do observe feedback $w^+ \sim W_e^+$; $\hat{\mu}_e^+ \leftarrow (\hat{\mu}_e^+ T_e^+ + w^+)/(T_e^+ + 1)$; $T_e^+ \leftarrow T_e^+ + 1$; $10:$ $11:$ end for $12:$ end for

The adjusted means $\tilde{\mu}_e^+$, $\tilde{\mu}_e^-$ are interpreted as edge weights of a correlationclustering instance and are fed as input to an oracle O that computes a MIN-CC solution C_t

The Correlation Clustering - Combinatorial Lower Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph $G = (V, E)$; an integer $T > 0$; an oracle O for MIN-CC **Output:** A clustering C_t of G, for all $t = 1, ..., T$ 1: initialize $\hat{\mu}^+ = \{\hat{\mu}_e^+\}_{e \in E}$ and $\hat{\mu}^- = \{\hat{\mu}_e^-\}_{e \in E}$; $\forall e \in E$: $T_e^+ \leftarrow 0, T_e^- \leftarrow 0$ 2: for $t = 1, ..., T$ do $\forall e \in E: \rho_e^+ \leftarrow \sqrt{\frac{3 \ln t}{2T_c^+}}, \ \rho_e^- \leftarrow \sqrt{\frac{3 \ln t}{2T_c^-}} (\rho_e^+ = 0, \text{ if } T_e^+ = 0; \rho_e^- = 0, \text{ if } T_e^- = 0)$ $3:$ $\forall e \in E: \tilde{\mu}_e^+ \leftarrow \max{\{\hat{\mu}_e^+ - \rho_e^+, 0\}}, \quad \tilde{\mu}_e^- \leftarrow \max{\{\hat{\mu}_e^- - \rho_e^-, 0\}}$ $4:$ $\mathcal{C}_t \leftarrow$ run **O** on input $\langle G, {\{\widetilde{\mu}_e^+\}}_{e \in E}, {\{\widetilde{\mu}_e^-\}}_{e \in E} \rangle$ $5:$ for $e = (u, v) \in E \mid C_t(u) = C_t(v)$ do $6:$ observe feedback $w^- \sim W_e^-$; $\hat{\mu}_e^- \leftarrow (\hat{\mu}_e^- T_e^- + w^-)/(T_e^- + 1)$; $T_e^- \leftarrow T_e^- + 1$; $7:$ $8:$ end for $9:$ for $e = (u, v) \in E \mid C_t(u) \neq C_t(v)$ do observe feedback $w^+ \sim W_e^+$; $\hat{\mu}_e^+ \leftarrow (\hat{\mu}_e^+ T_e^+ + w^+)/(T_e^+ + 1)$; $T_e^+ \leftarrow T_e^+ + 1$; $10:$ $11:$ end for 12: end for

Placing the clustering C_t gives a feedback about the unknown W_e^+ , W_e^- :

- *Intra-cluster edge:* a sample from W_e^-
- *Inter-cluster edge:* a sample from W_e^+

The yielded samples are used to update the mean estimates $\widehat{\mu}^+$, $\widehat{\mu}^-$

Regret Analysis of CC-CLCB algorithm

MIN-CC- (α, β) **-approximation regret.** Let C_I^* be the clustering minimizing the expected loss $\bar{d}_{\mu}(\cdot)$ on a CMAB-MIN-CC instance I, let M be the the expected loss of the worst possible clustering on I .

$$
Reg_{\mu,\alpha,\beta}(T) = \mathbb{E}\left[\sum_{t=1}^{T} \bar{d}_{\mu}(C_{t})\right] - T\left[\frac{1}{\alpha}\beta\bar{d}_{\mu}(C_{I}^{*}) + (1-\beta)\mathcal{M}\right]
$$

Theorem. Given $\alpha, \beta \in (0,1]$, the MIN-CC- (α, β) -approximation regret of the CC-CLCB algorithm, when equipped with a MIN-CC- (α, β) approximation oracle is upper-bounded by a function of T that is $O(log T)$.

Heuristic Variants of CC-CLCB

Rationale. Favor the fulfilment of some constraints on the MIN-CC instances to be processed by the oracle to make the latter perform better

- PC+Exp-CLCB computes the adjusted means $\tilde{\mu}_{uv}^+$, $\tilde{\mu}_{uv}^-$ such that the *local constraint* $\tilde{\mu}_{uv}^+ + \tilde{\mu}_{uv}^- = 1$ holds for every $u, v \in V$
- Global-CLCB computes the adjusted means $\tilde{\mu}_{uv}^+$, $\tilde{\mu}_{uv}^-$ such that the global constraint $\binom{|V|}{2}$ 7 -1 $\sum_{u,v\in V}(\tilde{\mu}^+_{uv}+\tilde{\mu}^-_{uv})\geq 1$ is satisfied

Special Edge-Weight Distributions

Symmetric distributions. [0, 1]-support random variables W_e^+ , $W_e^$ have symmetric distributions if and only if $W_e^+(x) = W_e^-(1-x)$, for all $x \in [0,1]$.

Theorem. Given α , $\beta \in (0,1]$, the MIN-CC- (α, β) -approximation regret of a *pure exploitation* (PE) strategy run on a CMAB-MIN-CC instance where all edge-weight distributions are symmetric, and equipped with a MIN-CC- (α, β) -approximation oracle is upperbounded by a function of T that is $O(1)$.

Evaluation

Data

• Real network data with artificially-generated edge weights

Assessment criteria

• Average expected normalized cumulative MIN-CC loss (up to round t) $f^{(t)}$ w.r.t. the true (unknown) edge weights μ :

$$
f^{(t)} = \frac{1}{t} \sum_{i=1}^{t} \mathbb{E}\left[\frac{\bar{d}_{\mu}(C_i)}{U}\right], \qquad U = \sum_{u,v \in V} \max\{\mu_{uv}^+, \mu_{uv}^-\}
$$

• Relative error norm (at round t) $ren^{(t)}$:

$$
ren^{(t)} = \sqrt{\frac{\sum_{e \in E} (\mu_e^+ - \hat{\mu}_{e,t}^+)^2 + \sum_{e \in E} (\mu_e^- - \hat{\mu}_{e,t}^-)^2}{\sum_{e \in E} (\mu_e^+)^2 + \sum_{e \in E} (\mu_e^-)^2}}
$$

Evaluation

Evaluation goals

- Assess the performance of the CMAB methods (CC-CLCB, EG, EGfixed, PE, CTS¹) in terms of $f^{(T)}$ and $ren^{(T)}$ and compare them to non-CMAB baselines (Adamic-Adar, Jaccard) and the reference Actual-weight method
- Evaluate the impact of varying the MIN-CC oracle (Pivot², $LP+R^3$) on the performance of the various CMAB methods

1. Wang Siwei, and Wei Chen. "Thompson sampling for combinatorial semi-bandits." International Conference on Machine Learning. PMLR, 2018. 2. Ailon Nir, Moses Charikar, and Alantha Newman. "Aggregating inconsistent information: ranking and clustering." Journal of the ACM (JACM) 55.5 (2008): 1-27. 3. Charikar Moses, Venkatesan Guruswami, and Anthony Wirth. "Clustering with qualitative information." Journal of Computer and System Sciences 71.3 (2005): 360-383.

Data

Table: Main characteristics of the real-world datasets used in our evaluation.

*Available from http://konect.cc/networks/ **Available from http://www.sociopatterns.org/datasets/

Edge weight generation. The random variables W_e^+ , W_e^- are assumed to follow a *Bernoulli* distribution, whose means are generated according to a scheme which ensures that the probability constraint holds on the generated means, i.e. first sample $\mu_e^+ \sim Uniform(0, 1)$, and then set $\mu_e^- = 1 - \mu_e^+$, for all $e \in E$.

Quality of the clusterings

- The loss values of all the CMAB methods follow a decreasing trend over the rounds since the CMAB algorithms learn how to cluster the vertices over time
- The non-CMAB baselines (Adamic-Adar, Jaccard) achieve the worst performance, Actual-weight is always the best method, the CMAB methods perform comparably or close to Actual-weight

Quality of the clusterings

Table. Performance in terms of $f(T)$ and growth rate (average amount of relative change between the initial and the final round over the span T, in percentage). All methods are equipped with Pivot as MIN-CC oracle.

- PE is the best-performing method since the adopted MIN-CC oracle (i.e., Pivot) is a randomized algorithm, thus, although with a pure-exploitation bandit strategy, it results in some implicit exploration
- CC-CLCB is comparable or close to the best methods in most cases

Quality of the learned edge weights

Table. Performance in terms of $ren^{(T)}$ and growth rate (average amount of relative change between the initial and the final round over the span T, in percentage). All methods are equipped with Pivot as MIN-CC oracle.

- the non-CMAB baselines yield the highest error values, while Actual-weight clearly achieves zero error everywhere
- EG-fixed is (comparable to) the best performer on the smaller datasets (Karate, Dolphins, Zebra, HighlandTribes, Contiguous-USA), while on the bigger datasets, CTS is (comparable to) the best method

Varying the MIN-CC oracle

- The general trend in terms of clustering quality is that LP+R leads to an increase in performance at the cost of higher running times
- The best performing method in terms of clustering quality is:
	- PE when equipped with Pivot
	- CTS when equipped with LP+R
- In terms of learned edge weights the advantage of using LP+R is less evident due to the high randomization of Pivot
- The best performing method in terms of edge weights estimation is:
	- EG-fixed when equipped with Pivot
	- CLCB when equipped with LP+R

Conclusion & Future Work

Summary:

- we have focused on the novel setting of correlation clustering where edge weights are unknown, and they need be discovered while performing multiple rounds of clustering.
- we have provided a Combinatorial Multi-Armed Bandit (CMAB) framework for correlation clustering, algorithms for it, analyses of the theoretical guarantees of these algorithms, more practical heuristics, and extensive experiments.

Future Work:

• we plan to investigate the theoretical properties of our heuristics, advanced CMAB settings, and clustering problems other than correlation clustering

Thank you! Questions?

Related Work

Query-efficient correlation clustering1,2

- edge weights are discovered by querying an oracle
- the goal is to cluster the input graph by using a limited budget of Q queries $(Q \ll O(|V|^2))$
- the oracle provides *true edge weights* for any query, at any time. Instead, in our setting, the feedback consists in a sample of the weight distributions
- existing approaches handle binary weights only (i.e., w_{uv}^+ , $w_{uv}^- \in \{0, 1\}$)
- 1. Bressan M, Cesa-Bianchi N, Paudice A, Vitale F (2019) Correlation clustering with adaptive similarity queries. In: Proceedings of the NIPS conference, pp. 12531–12540.
- 2. García-Soriano D, Kutzkov K, Bonchi F, Tsourakakis C (2020) Query-efficient correlation clustering. In Proceedings of the WWW conference, pp 1468–1478.

.