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Main Contributions

* Novel formulation of Correlation Clustering (CC) within a
reinforcement learning setting by designing a Combinatorial
Multi-Armed Bandit (CMAB) framework for correlation clustering

 The CMAB-CC problem

* Design and theoretical analysis of algorithms
* We devise a principled regret definition for our problem

* Extensive experimental evaluation



Min-Disagreement Correlation Clustering
(Min-CC)

Input:
* an undirected graph G = (V, E), with vertex set IV and edge set E € VXV

* weights wl,,, w,, € R{ for all edges (u, v) € E, where any w,f;, (resp. w;,) weight
expresses the benefit of clustering u and v together (resp. separately)

Output:
* aclustering C*:V — N7 that:

C* = argming d(C) = argming 2 Wy + 2 Wi,
(wv)EE (u,V)EE
C(u)=C(v) C(u)#C(v)



Correlation Clustering with Unknown Edge
Weights

* Traditionally, in correlation clustering it is assumed that the edge
weights are all given as input, e.g. derived from past user-
interaction history, experimental trials etc.

* Disadvantage: clustering has to be performed after that all the weights
are available

* We focus for the first time on a correlation-clustering setting
where the edge weights are not available and edge-weight
assessment is carried out while performing (multiple rounds of)
clustering



Correlation Clustering with Unknown Edge
Weights

Intra-cluster Inter-cluster
cost W, cost W},
w N
\ /7

Edge weights w,,,, w,},, are modeled as
random variables 1/, W,;}, with means

Hyy = E[Wu;]r H;v: [E[Wu-}l_z]



Correlation Clustering with Unknown Edge
Weights

Intra-cluster Inter-cluster
cost W, cost W,

2

Random variables 1/, W/}, and their
means (i, = E[W ], piy = E[W,35] are
unknown



Correlation Clustering with Unknown Edge
Weights

Intra-cluster Inter-cluster
cost estimate fl;,;, cost estimate i},

\ b/

Estimates of the mean of the edge-
weight distributions /i, [i;;, are
maintained for each (u,v) € E



Correlation Clustering with Unknown Edge
Weights

(i) Use an oracle O (CC algorithm)
with estimated weights to
compute a
Intra-cluster Inter-cluster "\
cost estimate fi;;, cost estimate i},
VA b 4
N\ 4

Estimates of the mean of the edge-
weight distributions i, [i;., are
maintained for each (u,v) € E



Correlation Clustering with Unknown Edge
Weights

(i) Use an oracle O (CC algorithm)
with estimated weights to
compute a
Intra-cluster Inter-cluster "\
cost estimate fi;;, cost estimate i},
v ~N .. . :
N ’ (ii) Placing the gives

feedback about the unknown
edge weights I/, .}, and the
guality of the

1 2 1
Estimates of the mean of the edge-

weight distributions [i,,,,, i}, are 1 3
maintained for each (u,v) € E

—/




Correlation Clustering with Unknown Edge
Weights

(i) Use an oracle O (CC algorithm) I’ \.‘
with estimated weights to | \
compute a clustering \ !
Intra-cluster Inter-cluster . N
cost estimate fi;;, cost estimate i}, So-
v. b 1 i B
e (ii) Placing the clustering gives
- feedback about the unknown
u v edge weights I/, .}, and the

qguality of the clustering
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Estimates of the mean of the edge- (iii) Update the mean O

weight distributions i, [i;., are estimates /1,,,,, [l N R P

maintained for each (u,v) € E and repeat from (i) S~ -
for T rounds



Applications

* Team formation

e Recommendations in online social platforms
* Task allocation

* Commercial scheduling in slots

 Shelf space allocation



The CMAB-MIN-CC Problem

/Given a graph G = (VV,E) and a number T > 0 of rounds, for every N
t =1,...,T find a clustering C,: V = N¥ so as to minimize

e[ g
o = | 4

J”(Ct) is the expected disagreement (cost) of the clustering C; according to the true

(unknown) means u = {{/v‘{tl_v}(u,v)EE; {.ut_w}(u,v)EE}




Exploration-Exploitation Trade-Off

A clustering at every round may be computed

1. by taking into account the current mean estimates based on an
approximate oracle (exploitation)

2. without looking at the mean estimates, so as to get feedback on
edge weights for which limited knowledge has been acquired so
far (exploration)

Objective: getting the best exploration-exploitation tradeoff whose
effectiveness is measured by the (expected) cumulative quality of
the clusterings produced in all the rounds.



Combinatorial Multi-Armed Bandit® (CMAB)

/n\
* A isthe set of m base slot-machines/arms to choose from 7lsl j’
* Each arm i is assigned a set {Xl-,tl 1<i<ml<t< T} of random variables < >

where each X; ; indicates the random “outcome” of playing base arm i in
round t.

» At each step t the agent selects/plays a subset of base arms (super arm)
A; € A and the outcomes of the random variables X; ¢, for all the base arms
Jj € A, are observed.

* Playing a superarm A; gives a reward R;(A;), which is a random variable
defined as a function of the outcomes of A;’s base arms.

* It is assumed the availability of an (&, B)-approximation oracle that, for
some a, f < 1, it outputs a superarm A; so that

Pr|E[R.(4,)] 2 aE[R.(4D)]| = B

* The goal is to maximize the (expected) cumulative reward E[Y.I_; R.(4;)] by
a proper exploration/exploitation trade-off




CMAB-MIN-CC as a CMAB instance

e base arms: each edge e = (u,v) € E has a pair of replicas, e and
e’ (m = |A| = 2|E])

e superarms: sets A € A that are consistent with the notion of
clustering
« forall e € E, A only contains e'™ or e®%t (|A| = |E])
e foralle; = (x,y),e, = (y,2),e3 = (x,z) €EE, if el ,e2 €A, thene €A

.~ base-arm outcome:
* Intra-cluster base arm e'": a sample from W,,,
* Inter-cluster base arm e°%“t: a sample from W,

e loss: d(A) = X, yin Wiy + X e gout Wb



Algorithms for CMAB-MIN-CC

Adaptation of well-established CMAB algorithms to the correlation-
clustering context:

1. focus on the context of general oracles for MIN-CC

2. case where the employed MIN-CC oracles achieve theoretical
guarantees only if the input (unknown) weights meet certain
properties

3. the special case of input edge-weight distributions satisfying
specific constraints



The Correlation Clustering - Combinatorial
Lower Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph G = (V, E); aninteger T' > 0; an oracle O for MIN-CC

Output: A clustering Ct of G, forallt =1,...,T
1: initialize it= {id }ecp and == {fiz }ecr; Ve € E: TS « 0,T; + 0
2: fort=1,...,T do

30 Ve€ E: pf  ([50, pe [T (08 =0, T = 0; pc = 0,if Te = 0)

4: Vee€ E: it + max{ad — pd,0}, e + max{jis. — ps,0}

3z Ct < run O on input (G, {/jj}eEEa {be }ecE)

6: fore= (u,v) € E|C¢(u) =Ct(v) do

() observe feedback w™ ~ W¢; fie < (file Te +w™)/(Te +1); Te «Te +1;
8:  end for

9: fore= (u,v) € E|C¢(u) # Ct(v) do

10: observe feedback wt ~ Wi ad « (pd TS +wt) /(TS +1); Tt « T + 1;
11:  end for

12: end for




The Correlation Clustering - Combinatorial
Lower Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph G = (V, E); aninteger 7' > 0; an oracle O for MIN-CC
Output: A clustering C; of G, forallt =1,...,T

1: initialize it= {id }ecp and == {fiz }ecr; Ve € E: TS « 0,T; + 0

2:fort=1,...,Tdo

3:  Ve€ E: pd «+ g;?f po 271?} (pd = 0,if ToF = 0; p = 0,if To = 0)

4: Ve € E: ﬁ: — max{ﬂj - pj,()}, lje_ — ma‘x{ﬁ’e_ - pe_ao}

5:  C¢ < run O oninput (G, {fid YecE, {fic YecE)

6: fore= (u,v) € E|C¢(u) =Ct(v) do

() observe feedback w™ ~ W¢; fie < (file Te +w™)/(Te +1); Te «Te +1;
8: end for

9: fore= (u,v) € E|C¢(u) # Ct(v) do

10: observe feedback wt ~ Wi ad « (ad TS +wt) /(T +1); T «+ T +1;
11: end for

12: end for

Initialization of the mean
estimates fi*, fi"and counters
T}, T, which denote the
number of times a sample from
W.t, W,™ has been observed




The Correlation Clustering- Combinatorial Lower
Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph G = (V, E); aninteger 7' > 0; an oracle O for MIN-CC
Output: A clustering Ct of G, forallt =1,...,T
1: initialize o= {d and == {jio ;. Ye€ E: T < 0,T; <0 :
o % AT= e feep and f7= {fie Jee © © the current mean estimates
c fort =1 1 do ) )
are adjusted with the terms

P, pa, so as to foster the
Ve € E: fid « max{iid — pd,0}, fic « max{jic — pc,0} exploration of less often
Ci < run O on input (G, {iid Yecr, {le }ecE) played base arms
for e = (u,v) € E | Ct(u) = C¢(v) do
observe feedback w™ ~ W¢; fie < (fie Te +w™)/(Te +1); Te < Te +1;
end for
for e = (u,v) € E | C¢(u) # Ce(v) do
10: observe feedback wt ~ Wi; pd « (pd TS +wh) /(TSF +1); ToF « ToF + 1,
11: end for
12: end for

3: Ve€ E: pd + Z;f’f pe + 2;‘} (pd = 0,if TSH =0; pz =0,if To = 0)

WS EE




The Correlation Clustering - Combinatorial
Lower Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph G = (V, E); aninteger 7' > 0; an oracle O for MIN-CC

Output: A clustering Ct of G, forallt =1,...,T
1: initialize it= {id }ecp and == {fiz }ecr; Ve € E: TS « 0,T; + 0
2: fort=1,...,T do

3: Ve€ E: pd «+ g;?f po qufl_t (pd =0,if TeH = 0; pa = 0,if 7o = 0)

4:  Vee€ E: i + max{id —ps,0}, fie < max{fic — pe,0}

5. C¢ < run O oninput (G, {fd }ecr, {lic }ecE)

6 fore=(u,v) € E{Ci(u)y=C:(v)do

() observe feedback w™ ~ W¢; fie < (file Te +w™)/(Te +1); Te «Te +1;
8:  end for

9: fore= (u,v) € E|C¢(u) # Ct(v) do

10: observe feedback wt ~ Wi ad « (pd TS +wt) /(TS +1); Tt « T + 1;
11:  end for

12: end for

The adjusted means
{iif, fi; }ocg are interpreted as
edge weights of a correlation-
clustering instance and are fed
as input to an oracle O that
computes a MIN-CC solution C;




The Correlation Clustering - Combinatorial
Lower Confidence Bound (CC-CLCB) algorithm

Algorithm 1 CC-CLCB

Input: A graph G = (V, E); aninteger 7' > 0; an oracle O for MIN-CC

Output: A clustering Ct of G, forallt =1,...,T
1: initialize it= {id }ecp and == {fiz }ecr; Ve € E: TS « 0,T; + 0
2: fort=1,...,T do

3 Ve€ B pd « \[ORE, po [ 7 (8 =0T =05 pc = 0,if T =0)

4: Ve € E: ﬁ: — max{ﬂj - pj,()}, lje_ — ma‘x{ﬁ’e_ - pe_ao}

5:  C¢ < run O oninput (G, {fid YecE, {fic YecE)

6: fore= (u,v) € E|Cit(u) =Ct(v) do

7l observe feedback w™ ~ W¢ 5 fie < (fle Te +w™)/(Te +1); Te «Te +1;
8: end for

9: fore = (u,v) € E|C¢(u) # Ct(v) do

10: observe feedback wt ~ Wi ad « (ad TS +wt) /(T +1); Tt «+ T +1;
11:  end for

12: end for

Placing the clustering C; gives

a feedback about the

unknown W,*, W,™:

* Intra-cluster edge: a sample
from W,~

* Inter-cluster edge: a sample
from W,*

The yielded samples are used

to update the mean estimates

/\+ AN —

H .1




Regret Analysis of CC-CLCB algorithm

MIN-CC-(a, B)-approximation regret. Let C; be the clustering
minimizing the expected loss d, (-) on a CMAB-MIN-CC instance /, let
M be the the expected Ioss of the ‘worst possible clustering on [.

Regyqp(T) = Z 1.e0| -7 pduen + 1 - prna

Theorem. Given a, € (O 1], the IVIIN CC-(a, f)-approximation regret
of the CC-CLCB algorithm, when equipped with a MIN-CC-(a, 5)-
approximation oracle is upper-bounded by a function of T that is

O(logT).



Heuristic Variants of CC-CLCB

Rationale. Favor the fulfilment of some constraints on the MIN-CC
instances to be processed by the oracle to make the latter perform
better

* PC+Exp-CLCB computes the adjusted means fi,',,, fi;;,, such that
the local constraint fi}, + fi;;, = 1 holds for everyu,v € V

* Global-CLCB computes the adjusted means fi;,, fi;, such that the
global constraint ('Vl) Zu sey (i, + [i,) = 1is satisfied



Special Edge-Weight Distributions

Symmetric distributions. [0, 1]-support random variables W,", W,~
have symmetric distributions if and only if W,"(x) = W,” (1 — x),
for all x € [0,1].

Theorem. Given a, 5 € (0,1], the MIN-CC-(«, )-approximation
regret of a pure exploitation (PE) strategy run on a CMAB-MIN-CC
instance where all edge-weight distributions are symmetric, and

equipped with a MIN-CC-(a, f)-approximation oracle is upper-
bounded by a function of T thatis O(1).



Evaluation

Data
* Real network data with artificially-generated edge weights

Assessment criteria

* Average expected normalized cumulative MIN-CC loss (up toround t) f (®)
w.r.t. the true (unknown) edge weights u:

1t d,(C;) _
o=ty BEE U= maxudun)
=1

u,vev

* Relative error norm (at round t) ren(®:

ZeeE(Hg_ — ﬂZt)Z T EeeE(Ne_ — ﬁ;t)z
>ecr(H)? + Y et )?

ren(t) = \



Evaluation

Evaluation goals

e Assess the performance of the CMAB methods (CC-CLCB, EG, EG-

fixed, PE, CTS?) in terms of £(7) and ren(™ and compare them to
non-CMAB baselines (Adamic-Adar, Jaccard) and the reference

Actual-weight method

 Evaluate the impact of varying the MIN-CC oracle (Pivot?, LP+R3)
on the performance of the various CMAB methods



Data

Table: Main characteristics of the real-world datasets used in our evaluation.

; avg. path | clusterin
V| | E| density | avg. degree 1 egn g T - fﬁcier%t
Karate™ 34 78 0.139 4.588 2.408 0.256
Dolphins* 62 159 0.084 5.129 3.357 0.309
Zebra* 27 111 0.316 8.222 1.842 0.845
Highland-Tribes* 16 58 0.483 7.250 1.542 0.527
Contiguous-USA™ 49 107 0.091 4.367 4.163 0.406
Last.fm 992 369973 0.753 745.913 1.247 0.860
PrimarySchool™* 242 8317 0.285 68.736 1.733 0.480
ProsperLoans 89269 3330022 8E-04 74.607 3.239 0.003
Wikipedia 343 860 10519921 2E-04 61.187 3.099 0.065
DBLP 1824701 8344615 SE-06 9.146 6.514 0.169

* Available from http://konect.cc/networks/  ** Available from http://www.sociopatterns.org/datasets/

Edge weight generation. The random variables W,*, W, are assumed to follow a Bernoulli distribution,
whose means are generated according to a scheme which ensures that the probability constraint holds
on the generated means, i.e. first sample u} ~Uniform(0,1), and thensetu; =1 — uf, foralle € E.



Quality of the clusterings

Adamic-Adar Actual-weight CC-CLCB-m EG-fixed CTS Global-CLCB
Jaccard CC-CLCB EG PE PC+Exp-CLCB Global-CLCB-m
0.701
0.651
0.70+ | 0.654
0.60
) S = 0.604
*~ (.65- k S~
\ 0.551 0554 \
0601 “wax
0.50- 0.50-
0 100 200 300 400 0 100 200 300 400 0 100 200 300 400
round t round ¢ round t
(a) Karate (b) Highland-Tribes (c) C-USA

The loss values of all the CMAB methods follow a decreasing trend over the rounds since the CMAB
algorithms learn how to cluster the vertices over time

The non-CMAB baselines (Adamic-Adar, Jaccard) achieve the worst performance, Actual-weight is
always the best method, the CMAB methods perform comparably or close to Actual-weight



Quality of the clusterings

Table. Performance in terms of f(T) and growth rate (average amount of relative change between the initial and the final round over
the span T, in percentage). All methods are equipped with Pivot as MIN-CC oracle.

| method || Karate | Dolphins | Zebra | HighlandTribes | Contiguous-USA | Last.fm | PrimarySchool | ProsperLoans | Wikipedia | DBLP |
CC-CLCB 0.59 0.54 0.58 0.51 0.53 0.67 0.65 0.66 0.66 0.62
-18.22% | -19.09% | -21.67% -20.08% -24.36% -0.19% -1.94% -0.79% -0.56% -7.28%
EG 0.58 0.52 0.57 0.5 0.51 0.66 0.64 0.66 0.66 0.61
-13.59% | -21.31% | -14.72% -24.44% -24.4% -0.36% -3.29% -1.32% -0.68% -9%
EG-fixed 0.59 0.52 0.57 0.5 0.52 0.66 0.64 0.66 0.66 0.61
-18.71% | -21.77% | -22.17% -20.27% -25.8% -0.31% -2.68% -1.2% -0.65% -8.44%
PE 0.58 0.51 0.56 0.49 0.5 0.66 0.64 0.66 0.66 0.6
-19.54% | -23.45% -24.03% -22.9% -28.52% -0.34% -3.01% -1.34% -0.71% -9.41%
CTS 0.58 0.51 0.56 0.49 0.51 0.66 0.64 0.66 0.66 0.61
-15.34% | -21.17% | -16.59% -24.13% -24.09% -0.34% -3.19% -1.26% -0.7% -8.91%
Adamic-Adar 0.7 0.68 0.7 0.62 0.62 0.67 0.66 0.67 0.67 0.67
Jaccard 0.74 0.69 0.59 0.6 0.67 0.67 0.66 0.67 0.67 0.67
[ Actualweight | 058 | 05 | 054 | 049 0.49 066 | 064 | 066 | 066 | 06 |

e PE is the best-performing method since the adopted MIN-CC oracle (i.e., Pivot) is a randomized algorithm,

thus, although with a pure-exploitation bandit strategy, it results in some implicit exploration

* CC-CLCB is comparable or close to the best methods in most cases



Quality of the learned edge weights

Table. Performance in terms of ren(™ and growth rate (average amount of relative change between the initial and the final round over
the span T, in percentage). All methods are equipped with Pivot as MIN-CC oracle.

| method || Karate | Dolphins | Zebra | HighlandTribes | Contiguous-USA | Last.fm | PrimarySchool | ProsperLoans | Wikipedia | DBLP |
CC-CLCB 0.19 0.26 0.05 0.25 0.14 0.05 0.07 0.52 0.22 0.2
-76.88% -68.89% -93.14% -71.42% -83.15% -93.89% -92.29% -39.69% -74.07% -77.23%
EG 0.09 0.13 0.06 0.09 0.1 0.06 0.08 0.41 0.2 0.17
-89.08% -84.59% -92.44% -89.48% -87.57% -93.45% -91.15% -53.22% -77.43% -80.84%
EG-fixed 0.08 0.11 0.06 0.08 0.09 0.06 0.07 0.37 0.18 0.14
-89.99% -86.82% -92.88% -90.95% -89.39% -93.51% -91.43% -57.49% -79.54% -83.82%
PE 0.34 0.32 0.15 0.23 0.27 0.06 0.09 0.45 0.24 0.25
-58.88% -62.81% -81.57% -73.39% -66.94% -93.31% -90.09% -48.2% -72.24% -71.13%
cTS 0.09 0.13 0.06 0.12 0.09 0.06 0.08 0.27 0.18 0.13
-79.31% -72.69% -86.55% -74.09% -80.75% -87.46% -83.33% -41.24% -59.65% -70.49%
Adamic-Adar 0.66 0.7 0.63 0.54 0.61 0.79 0.68 0.94 0.81 0.67
Jaccard 0.72 0.64 0.73 0.53 0.56 0.72 0.61 0.99 0.9 0.81
| Actual-weight || 0 0o | 0 0 0 0o | 0 0 0 0 |

e the non-CMAB baselines yield the highest error values, while Actual-weight clearly achieves zero error
everywhere

* EG-fixed is (comparable to) the best performer on the smaller datasets (Karate, Dolphins, Zebra,

HighlandTribes, Contiguous-USA), while on the bigger datasets, CTS is (comparable to) the best method



Varying the MIN-CC oracle

* The general trend in terms of clustering quality is that LP+R leads to
an increase in performance at the cost of higher running times

* The best performing method in terms of clustering quality is:
* PE when equipped with Pivot
* CTS when equipped with LP+R

* In terms of learned edge weights the advantage of using LP+R is less
evident due to the high randomization of Pivot

* The best performing method in terms of edge weights estimation is:
e EG-fixed when equipped with Pivot
* CLCB when equipped with LP+R



Conclusion & Future Work

Summary:

* we have focused on the novel setting of correlation clustering where edge
weights are unknown, and they need be discovered while performing
multiple rounds of clustering.

e we have provided a Combinatorial Multi-Armed Bandit (CMAB)
framework for correlation clustering, algorithms for it, analyses of the
theoretical guarantees of these algorithms, more practical heuristics, and
extensive experiments.

Future Work:

* we plan to investigate the theoretical properties of our heuristics,
advanced CMAB settings, and clustering problems other than correlation
clustering



Thank youl!
Questions?






Related Work

Query-efficient correlation clustering!-2
* edge weights are discovered by querying an oracle

* the goal is to cluster the input graph by using a limited budget of Q queries
(Q < o(IVI*)

* the oracle provides true edge weights for any query, at any time. Instead, in
our setting, the feedback consists in a sample of the weight distributions

« existing approaches handle binary weights only (i.e., w,5,, w,;,, € {0,1})



