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General context: maximize interactions (user engagement) in social
network system

Focus on two properties of a social network system:
1. Uncertainty in user behaviors

2. Exogenous conditions can affect the users’ interaction behaviors

Our design choice: clustering constraint assumption

e the (uncertain) interaction behaviors depend on a clustering of the
set of users in a graph.



Applications (I)

Online social platforms

* User personal home pages show contents produced by
other users

* A cluster of users corresponds to a set of users which
are interested in contents generated by users
belonging to the cluster

* Goal: exploit a clustering of the user to drive the
delivering of contents to homepages such as to
maximize the overall interaction between users
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Applications (II)

Team formation

* Users should be grouped into teams to contribute to a

common global task
* The likelihood of collaboration between any pair of
users will vary in relation to their assignment to the u

same team

e Goal: partition the set of users into teams in order to u

maximize the total collaboration




Overall Interaction

Gir1 = (V,E, Weyq)

Overall interaction
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Probabilistic Interaction Graph

Gt+1 — (V, Er Wt+1)
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Probabilistic interaction graph



Clustering-Conditional Probabilistic Graph

‘ C Clustering of VV

Pe = {puy € PFlC(u) = C(w)}Uipyy € P7IC(u) # C(v)}

Ge = (V,E, Pe) Clustering-conditional probabilistic graph



Problem formulations

Given two interaction graphs G = (V,E,P*), G~ = (V,E,P™) find a
clustering C*:V — N to:

1) Maximize (expected) overall interaction

2) Minimize (expected) overall interaction loss



Related Work

* Clustering uncertain graphs:
* Interactions are binary
* Maximize the intra-cluster connectivity and minimize the inter-cluster connectivity
e Exogenous conditioning factors are not considered

e Community detection in signed graphs:
e Edges with a sign and a weight
e Maximize positive (resp. negative) links within (resp. between) communities

e Correlaton clustering:
* Advice on whether two nodes should be clustered together or not
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Background: (Weighted) Correlation Clustering

Given a set () of entities, and weights a);y, Wyy € R¢ for all unordered pairs x,y €
find a clustering C: () = N that:

* Maximize Agreements z a);y+ z Wyy
(Max-CC) x,YEQ x,YEQ
C(x)=C(y) C(x)=C(Y)

* Minimize Disagreements z Wyy T z Wity
(Min-CC) X, yEQ x,yEQ
C(x)=C(y) Cx)#C(y)



Maximizing Interaction

QAX-INTERACTION-CLUSTERING. Given two interaction graphs G* = (V,E, P"), )

G~ = (V,E,P7) find a clustering C*: V — N such that:

&

Overall interaction
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Maximizing Interaction

* MAX-INTERACTION-CLUSTERING is NP-Hard

* Approximation algorithms designed for Max-CC keep their
guarantees on MAX-INTERACTION-CLUSTERING too

e State-of-the-art approximation algorithms for Max-CC (on general,
weighted graphs) are inefficient and impractical (output at most a
small, fixed number of clusters)



Minimizing Interaction Loss

QIN-INTERACTION-LOSS-CLUSTERING. Given two interaction graphs G* = (V, E, PJ“\),
G~ = (V,E,P™) find a clustering C*: V — N such that:

Overall interaction loss

_ ) 4
C* = argmin £(G¢) = argmin Egee [£(G)]
c c
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Minimizing Interaction Loss

e MIN-INTERACTION-LOSS-CLUSTERING is NP-Hard and it is
equivalent to its maximization formulation counterpart

* Approximation algorithms designed for Min-CC keep their
guarantees (under certain conditions) on MIN-INTERACTION-LOSS-

CLUSTERING too

 More practical and efficient algorithms available for Min-CC



Pivot algorithm

 Pick a node u uniformly at random

e Build a cluster upon u together with its similar nodes that are still
unclustered

« Remove the built cluster from the graph

 Repeat until the graph is empty

Properties of Pivot:
* (expected) 5-approximation guarantee
e (Can be improved to 2-approximation guarantee provided that

weights satisfy the triangle inequality property



Theoretical basis

It does not hold for
our instances

Question: is solving our problem equivalent to solve Min-CC instance where the
probability constraint is satisfied?

Probability Constraint: w;y, + wy, = 1 forallx,y € Q -

2(Ge) = 9(Ge) X M(G*,67) + K(G*,G7) @
Min-CC objective over an Constant depending
instance where probability on the input graphs

constraint holds



Theoretical basis

Theorem. If K(G*,G7) = 0, then Pivot is a randomized expected
5-approximation algorithm for MIN-INTERACTION-LOSS-CLUSTERING

Condition for approximation guarantees

K(G*.67)=0

I

v
Z lE[pJv]HE[pJv]SM(g+,g—)x<| |) - It holds for
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Pivot for minimizing interaction loss (MIL)

Algorithm 1 MIL

Input: Interaction graphs G* =(V, E, P*), G~ =(V, E, P7)
Output: A clustering C of V _ _ _
Build the Min-CC instance where

1 te .74, Tare, for all (u, v) € E " -
compute 7., 7, for all (u, v) _ the probability constraint holds

2: C « 0, Vi <V

3: while V' # () do h

4:  pick a pivot vertex u € V' uniformly at random Pivot

5 Cu<—{utU{veV |(uv)eE 1), >1,,} > algorithm
6 add cluster C,, to C and remove all vertices in C,, from V'

MIL runs in O(|V| + |E]|) time



MIL algorithm: effect of sampling pivots
uniformly at random in general graphs

sign((u,v)) = {i’ é{hfil‘i?ig]e> Elpuv)

c* =1{{1,5,8,9},{3,7,10,11},{2,4,6,12}}

No matter to put non-linked :
: . Idea: sample pivots by degree!
nodes in the same cluster or in

different clusters



D-MIL algorithm

Algorithm 2 D-MIL
Input: Interaction graphs G* = (V, E, P*), G~ =(V, E, P7)

Output: A Cluiterm_g CofV Build the Min-CC instance where
1: compute 7y, Ty for all (u, v) € E the probability constraint holds

2: C— 0,V «V

3: while V' # () do

4:  compute dy/(u) = [{v e V' | (u,v) € E}|,forallu € V’
5. sample a pivot vertex u € V' with probability proportional tody (1) \
6: Cyu<—A{ulu{veV' |(u,v)eE 1, ,>1,,}

7 add cluster C, to C and remove all vertices in C,, from V’ J

\
Pivot algorithm with

sampling by degree
(no approximation guarantee)

D-MIL runs in O(|E|log |V]) time



Hill Climbing

Algorithm 3 HillClimbing

Input: Interaction graphs G* = (V, E, P*), G~ = (V, E, P7); A cluster-
ing C of V; Aninteger I > 0

Output: A clustering C’ of V . . . .

L O e Hill Climbing runs in

2: foralli=1,...,1do 0(1 X (lVl + |E|)) t|me

3:  forevery u € Vlet Cy, € C’ the cluster of C’ where u belongs to

4:  pick u € V and cluster C], € C’ (C;, # C,) that minimize Eq. (16)

5. C"” « clustering obtained from C’ by moving u from C,, to C;,

6: if E(gcﬂ) < E(gcr) then

7: Cl «— CII

 MIL + Hill Climbing = MIL_R ‘ * Approximation guarantees of MIL

e D-MIL + Hill Climbing = D-MIL_R ‘ * No approximation guarantees



Evaluation

Data

* Real network data
* Syntethic network data: Barabasi-Albert (BA) and Watts-Strogatz (WS)

random graph models

Evaluation goals
* |Interaction Loss
* Clustering size
e Efficiency evaluation
e Comparison with competing methods (CPM?, CJA?, CPMap3)

1. V. A. Traag and J. Bruggeman. 2009. Community detection in networks with positive and negative links. Physical Review E 80,3(2009),036115.
2. S. Gémez, P. Jensen, and A. Arenas. 2009. Analysis of community structure in networks of correlated data. Physical Review E 80,1(2009),016114.
3. P. Esmailian and M. Jalili. 2015. Community detection in signed networks: the role of negative ties in different scales. Scientific reports 5(2015),14339.



Real network data

Preprocessing of timestamped networks:

 The edge set E of the probabilistic graph are obtained by "flattening" the temporal network
 The distributions p;f,, and p;;, are estimated based on the fraction of clusters shared by u, v

over all graphs

Table 1: Summary of real networks

4 Zthl |E¢]| T edge semantics |E|

Amazon 2146057 | 22728036 | 115 | co-rating 22507 680
DBLP 1824701 | 11865584 | 80 | co-authorship 8344615
Epinions 120492 | 33412111 | 25 | co-rating 24994363
HighSchool 327 47 589 1212 | face-to-face 5818
Last.fm 992 4342951 77 | co-listening 369973
PrimarySchool 242 55043 390 | face-to-face 8317
ProsperLoans 89 269 3343271 | 307 | economic 3330022
StackOverflow || 2433067 | 16200209 | 51 | Q/A 15786 816
Wikipedia 343860 | 18086734 | 101 | co-editing 10519921
WikiTalk 2863439 | 10335318 | 192 | communication || 8146544




Avg. loss values and clustering sizes on real data

MIL MIL_R D-MIL D-MIL_R CPM [21] GJA [9] CPMap [7]
loss #clusters loss #clusters loss #clusters loss #clusters loss #clusters loss #clusters loss #clusters
Amazon 4.80x10° 1.51x10° [ 3.82x10° 1.36%10°|4.49%10° 1.47x10°] 3.69% 10° 1.34x10° | 4.38 x 10° 1.17x10° [ 4.33x10° 1.03 x 10° | 3.66 x 10° 1.34 x 10°
DBLP 3.94 % 10° 986.02 % 10°| 3.17 x 10° 614.86 % 10| 3.70 X 10® 858.93 x 10°| 3.01 x 10° 557.90 x 107 2.55 x 10°% 354.03 x 10°| 2.89 x 10° 506.72 % 107 2.81 x 10° 393.38 x 10°
Epinions 12,92 X 10° 76.81 x 10° | 4.71 x 10° 47.54 X 10°| 9.06 X 10° 65.59 x 10° | 4.70 X 10® 47.51 x 10°| 9.80 x 10° 16.73 x 10° | 8.82 % 10° 16.68 x 10° | 5.06 x 10° 65.31 x 10°
HighSchool 459%x10° 4526 | 3.50 X 10° 8.16 4.44x10°  37.66 3.35 X 10° 6.38 4.29 x 10° 9.00 3.43 X 10° 7.00 3.29 X 10° 8.00
Last.fm 164.67 X 10°  57.04 [150.25 X 10°  37.64 [163.35x 10°  42.10 [150.25x 10%  36.94 [161.53 x 10°  3.00  [160.66 X 10°  4.00  [151.60 X 10°  37.00
PrimarySchool || 6.95 x 10° 16.44 5.01 x 10° 1.20 6.80 x 10° 15.12 4.92 x 10° 1.04 6.48 x 10° 5.00 6.27 X 10° 5.00 5.46 x 10° 2.00
ProsperLoans || 1.82x 10° 39.60 x 10°| 1.30 x 10° 3.75x 107 | 1.81 x 10° 26.06 x 10°| 1.28 x 10® 3.70 x 10° | 1.28 x 10° 1.54x 10° | 1.30 X 10° 1.13x 10° | 1.39 x 10° 7.49 x 10°
StackOverflow [12.39 x 10® 1.74 x 10° | 8.83 x 10° 308.66 x 10°[11.91 x 10° 1.27 x 10° | 8.65 X 10® 237.36 X 10% 9.90 x 10° 106.58 x 10°| 9.26 x 10° 13.78 X 10° | 10.81 x 10° 188.44 x 10°
Wikipedia 6.74 x 10° 276.14 X 10°| 5.31 X 10% 157.77 X 10° 6.44 X 10° 246.29 X 10°| 5.26 x 10® 168.80 x 10 5.84 X 10° 113.64 x 10°| 5.84 x 10° 108.82 X 107 5.83 X 10° 209.68 x 10°
WikiTalk 6.29x10° 2.77 x 10° | 3.72 x 10° 381.88 x 10 5.41 X 10° 1.99 x 10° | 3.38 x 10° 485.66 x 107 3.68 X 10° 351.73 x 10°| 5.13 x 10° 1.69 x 10° NA NA
| tot. average || 4.91x10° 7.40x 10° | 3.10x 10° 2.87x 10° | 4.30 x 10° 5.93x 10° | 3.01 x 10° 2.84 X 10° | 3.76 x 10° 2.11x 10° | 3.77 x 10° 3.37 X 10° | 3.30 X 10° 2.45 X 10°

D-MIL outperforms MIL
MIL R and D-MIL_R produce better

solutions than MIL and D-MIL

D-MIL R is the best performing method

and outperforms competing methods

* D-MIL yelds a smaller number of
clusters than MIL
* MIL and D-MIL produce more clusters
than MIL_R and D-MIL_R
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Time performances (in seconds) on real data

MIL [MIL_R]opt. time|[[D-MIL|D-MIL_R[opt. time|[CPM [21]] GJA[9] |CPMap [7]
Amazon 8.63 [347.77] 339.14 |[ 97.40 | 427.28 | 329.88 || 2248.9 [1020122.23] 669.114
DBLP 6.11 [189.63| 183.52 || 71.15 | 251.24 | 180.09 || 1570.41 | 147159.68 | 601.044
Epinions 5.90 [327.27| 321.38 || 18.90 | 348.11 | 329.21 || 797.71 | 34998.9 | 592.901
High School || 0.00 | 0.04 | 0.04 || 0.01 | 0.04 0.03 0.2 0.19 2.716
Last.fm 0.03] 3.48 | 3.45 | 0.14 | 3.72 3.58 7.73 21.54 10.467
PrimarySchool|| 0.00 | 0.06 | 0.05 || 0.01 | 0.05 0.04 0.125 0.1 3.698
ProsperLoans || 0.70 | 48.74 | 48.04 || 4.31 | 52.06 | 47.75 || 179.78 | 30152.47 | 116.59
StackOverflow|| 7.88 [319.67| 311.79 |[105.68| 397.39 | 291.72 || 2465.76 |1140054.23| 1519.943
Wikipedia 2.41 [150.03| 147.62 || 19.05 | 160.69 | 141.64 || 826.93 | 189345.74 | 316.438
WikiTalk 13.92/203.49| 189.56 |[129.10| 300.68 | 171.58 || 1165.01 | 650 282.4 NA

MIL is faster than D-MIL

Running times for MIL_R and D-MIL_R are dominated by
optimization time (Hill Climbing)

MIL R is faster than D-MIL_R

Competing methods are always outperformed by our algorithms




Comparison with competitors on synthetic data

loss decrease (%)
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For the BA model, m is the number of edges to attach
with a new vertex

For the WS model, neigh is the distance within which
two vertices will be connected

e Superiority of D-MIL R w.r.t.
competing methods in terms of
effectiveness

* OQOur algorithms are faster than
competing methods



Conclusions & Future Work

Summary:

 We introduced the problem of optimizing the overall interaction among a set of entities
whose interaction patterns depend on their cluster memberships

* We exploit the connection with correlation clustering to develop both approximation
algorithms and heuristics (for the minimization formulation)

* Experimental evaluation of our algorithms on both synthetic and real network datasets:
» Better effectiveness and efficiency than competing methods

Future Work:

e Clustering properties:
* Overlapping
 Size bounds

* Probability distributions of interactions are not given
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ABSTRACT

We study two novel clustering problems in which the pairwise
interactions between entities are characterized by probability distri-
butions and conditioned by external factors within the environment
where the entities interact. This covers any scenario where a set
of actions can alter the entities’ interaction behavior. In particular,
we consider the case where the interaction conditioning factors
can be modeled as cluster memberships of entities in a graph and
the goal is to partition a set of entities such as to maximize the
overall vertex interactions or, equivalently, minimize the loss of
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behaviors into a representation of user interaction patterns [14].
A common way of modeling uncertainty in a graph, which we re-
fer to in this work, is to associate each pair of (linked) users with
a probability value that expresses the likelihood of observing and
quantifying an interaction between the two users. In this regard, one
important aspect is that the modeling of user interactions should
also account for exogenous conditions or events that occur within
the social environment where the users belong to, which indeed can
significantly affect the users’ interaction behaviors. For example,
delivering a post on a user’s page (e.g., Facebook wall) that contains



