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General context: maximize interactions (user engagement) in social 
network system

Focus on two properties of a social network system:

1. Uncertainty in user behaviors

2. Exogenous conditions can affect the users’ interaction behaviors

Our design choice: clustering constraint assumption

• the (uncertain) interaction behaviors depend on a clustering of the 
set of users in a graph.



Applications (I)

Online social platforms

• User personal home pages show contents produced by 
other users

• A cluster of users corresponds to a set of users which 
are interested in contents generated by users 
belonging to the cluster

• Goal: exploit a clustering of the user to drive the 
delivering of contents to homepages such as to 
maximize the overall interaction between users



Applications (II)

Team formation

• Users should be grouped into teams to contribute to a 
common global task

• The likelihood of collaboration between any pair of 
users will vary in relation to their assignment to the 
same team

• Goal: partition the set of users into teams in order to 
maximize the total collaboration
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Probabilistic Interaction Graph
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Probabilistic interaction graph

Possible worlds

𝐺𝑡 , 𝐺𝑡+1 ⊑ 𝒢
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Clustering-conditional probabilistic graph𝒢𝒞 = (𝑉, 𝐸, 𝑃𝒞)
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𝒢+ = 𝑉, 𝐸, 𝑃+ 𝒢− = 𝑉, 𝐸, 𝑃−

Clustering of𝒞 𝑉

Clustering-Conditional Probabilistic Graph



Problem formulations

Given two interaction graphs 𝒢+ = 𝑉, 𝐸, 𝑃+ , 𝒢− = 𝑉, 𝐸, 𝑃− find a 
clustering 𝒞∗: 𝑉 → ℕ to:

1) Maximize (expected) overall interaction

2) Minimize (expected) overall interaction loss



Related Work

• Clustering uncertain graphs:
• Interactions are binary

• Maximize the intra-cluster connectivity and minimize the inter-cluster connectivity

• Exogenous conditioning factors are not considered

• Community detection in signed graphs:
• Edges with a sign and a weight

• Maximize positive (resp. negative) links within (resp. between) communities

• Correlaton clustering:
• Advice on whether two nodes should be clustered together or not

G. Kollios, M. Potamias, and E. Terzi. 2013. Clustering Large Probabilistic Graphs. IEEE TKDE 25,2(2013),325–336. 
M. Ceccarello, C. Fantozzi, A. Pietracaprina, G. Pucci, and F. Vandin. 2017. Clustering Uncertain Graphs. PVLDB 11,4(2017),472–484.
Yu G., Chunpeng G., Gao C., and Ge Y. 2014. Effective and Efficient Clustering Methods for Correlated Probabilistic Graphs. IEEE TKDE 26, 5(2014),1117–1130.
A. Khan, F. Bonchi, F. Gullo, and A. Nufer. 2018. Conditional Reliability in Uncertain Graphs. IEEE TKDE 30,11(2018),2078–2092. 
V. A. Traag and J. Bruggeman. 2009. Community detection in networks with positive and negative links. Physical Review E 80,3(2009),036115.
S. Gómez, P. Jensen, and A. Arenas. 2009. Analysis of community structure in networks of correlated data. Physical Review E 80,1(2009),016114.
P. Esmailian and M. Jalili. 2015. Community detection in signed networks: the role of negative ties in different scales. Scientific reports 5(2015),14339.  
N. Bansal, A. Blum, and S. Chawla. 2004. Correlation Clustering. Machine Learning 56,1(2004),89–113.   



Background: (Weighted) Correlation Clustering

Given a set Ω of entities, and weights 𝜔𝑥𝑦
+ , 𝜔𝑥𝑦

− ∈ ℝ0
+ for all unordered pairs 𝑥, 𝑦 ∈ Ω

find a clustering 𝒞: Ω → ℕ that:

• Maximize Agreements
(Max-CC)

෍
𝑥,𝑦∈Ω

𝒞 𝑥 =𝒞(𝑦)

𝜔𝑥𝑦
− + ෍

𝑥,𝑦∈Ω

𝒞 𝑥 ≠𝒞(𝑦)

𝜔𝑥𝑦
+• Minimize Disagreements

(Min-CC)

෍
𝑥,𝑦∈Ω

𝒞 𝑥 =𝒞(𝑦)

𝜔𝑥𝑦
+ + ෍

𝑥,𝑦∈Ω

𝒞 𝑥 ≠𝒞(𝑦)

𝜔𝑥𝑦
−



Maximizing Interaction

MAX-INTERACTION-CLUSTERING. Given two interaction graphs 𝒢+ = 𝑉, 𝐸, 𝑃+ ,
𝒢− = 𝑉, 𝐸, 𝑃− find a clustering 𝒞∗: 𝑉 → ℕ such that:

𝒞∗ = argmax
𝒞

𝑓(𝒢𝒞) = argmax
𝒞

𝔼𝐺⊑𝒢𝒞 [𝑓(𝐺)]

Overall interaction

Max-CC instance

෍
𝑥,𝑦∈Ω

𝒞 𝑥 =𝒞(𝑦)

𝜔𝑥𝑦
+ + ෍

𝑥,𝑦∈Ω

𝒞 𝑥 ≠𝒞(𝑦)

𝜔𝑥𝑦
−

Ω = 𝑉,𝜔𝑥𝑦
+ = 𝔼 𝑝𝑢𝑣

+ , 𝜔𝑥𝑦
− = 𝔼[𝑝𝑢𝑣

− ]

𝑓 𝒢𝒞 = ෍
𝑢,𝑣∈𝑉

𝒞 𝑢 =𝒞(𝑣)

𝔼[𝑝𝑢𝑣
+ ] + ෍

𝑢,𝑣∈𝑉
𝒞 𝑢 ≠𝒞(𝑣)

𝔼[𝑝𝑢𝑣
− ]



Maximizing Interaction

• MAX-INTERACTION-CLUSTERING is NP-Hard

• Approximation algorithms designed for Max-CC keep their 
guarantees on MAX-INTERACTION-CLUSTERING too

• State-of-the-art approximation algorithms for Max-CC (on general, 
weighted graphs) are inefficient and impractical (output at most a 
small, fixed number of clusters)



Minimizing Interaction Loss

MIN-INTERACTION-LOSS-CLUSTERING. Given two interaction graphs 𝒢+ = 𝑉, 𝐸, 𝑃+ , 
𝒢− = 𝑉, 𝐸, 𝑃− find a clustering 𝒞∗: 𝑉 → ℕ such that:

𝒞∗ = argmin
𝒞

ℓ 𝒢𝒞 = argmin
𝒞

𝔼𝐺⊑𝒢𝒞[ℓ(𝐺)]

Overall interaction loss

Min-CC instance

෍
𝑥,𝑦∈Ω

𝒞 𝑥 =𝒞(𝑦)

𝜔𝑥𝑦
− + ෍

𝑥,𝑦∈Ω

𝒞 𝑥 ≠𝒞(𝑦)

𝜔𝑥𝑦
+

Ω = 𝑉

𝜔𝑥𝑦
+ = 𝑀 𝒢+, 𝒢− − 𝔼 𝑝𝑢𝑣

−

𝜔𝑥𝑦
− = 𝑀 𝒢+, 𝒢− − 𝔼[𝑝𝑢𝑣

+ ]

ℓ 𝒢𝒞 = ෍
𝑢,𝑣∈𝑉

𝒞 𝑢 =𝒞(𝑣)

𝑀 𝒢+, 𝒢− − 𝔼[𝑝𝑢𝑣
+ ] + ෍

𝑢,𝑣∈𝑉
𝒞 𝑢 ≠𝒞(𝑣)

𝑀 𝒢+, 𝒢− − 𝔼[𝑝𝑢𝑣
− ]



Minimizing Interaction Loss

• MIN-INTERACTION-LOSS-CLUSTERING is NP-Hard and it is
equivalent to its maximization formulation counterpart

• Approximation algorithms designed for Min-CC keep their 
guarantees (under certain conditions) on MIN-INTERACTION-LOSS-
CLUSTERING too

• More practical and efficient algorithms available for Min-CC



Pivot algorithm

• Pick a node 𝑢 uniformly at random
• Build a cluster upon 𝑢 together with its similar nodes that are still 

unclustered
• Remove the built cluster from the graph
• Repeat until the graph is empty

Properties of Pivot:
• (expected) 5-approximation guarantee
• Can be improved to 2-approximation guarantee provided that

weights satisfy the triangle inequality property



Theoretical basis

Probability Constraint: 𝜔𝑥𝑦
+ + 𝜔𝑥𝑦

− = 1 for all 𝑥, 𝑦 ∈ Ω

It does not hold for 
our instances

ℓ 𝒢𝒞 = 𝑔 𝒢𝒞 ×𝑀 𝒢+, 𝒢− + 𝐾 𝒢+, 𝒢−

Question: is solving our problem equivalent to solve Min-CC instance where the 
probability constraint is satisfied?

Min-CC objective over an 
instance where probability

constraint holds

Constant depending
on the input graphs



Theoretical basis

Theorem. If𝐾 𝒢+, 𝒢− ≥ 0, then Pivot is a randomized expected
5-approximation algorithm for MIN-INTERACTION-LOSS-CLUSTERING

Condition for approximation guarantees

෍
(𝑢,𝑣)∈𝐸

𝔼[𝑝𝑢𝑣
+ ] + 𝔼 𝑝𝑢𝑣

− ≤ 𝑀 𝒢+, 𝒢− ×
|𝑉|

2

It holds for 
sparse graphs

𝐾 𝒢+, 𝒢− ≥ 0֞



Pivot for minimizing interaction loss (MIL)

MIL runs in 𝑂 𝑉 + 𝐸 time

Pivot 
algorithm

Build the Min-CC instance where
the probability constraint holds



MIL algorithm: effect of sampling pivots 
uniformly at random in general graphs

𝒞∗ = 1, 5, 8, 9 , 3, 7, 10, 11 , 2, 4, 6, 12

𝑠𝑖𝑔𝑛 𝑢, 𝑣 = ቊ
+ 𝑖𝑓 𝔼 𝑝𝑢𝑣

+ > 𝔼 𝑝𝑢𝑣
−

− 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

No matter to put non-linked
nodes in the same cluster or in 

different clusters

Idea: sample pivots by degree!



D-MIL algorithm

D-MIL runs in 𝑂 𝐸 log |𝑉| time

Pivot algorithm with 
sampling by degree

(no approximation guarantee)

Build the Min-CC instance where
the probability constraint holds



Hill Climbing

• MIL + Hill Climbing = MIL_R

• D-MIL + Hill Climbing = D-MIL_R

• Approximation guarantees of MIL

• No approximation guarantees

Hill Climbing runs in
𝑂 𝐼 × ( 𝑉 + 𝐸 ) time



Evaluation

Data
• Real network data
• Syntethic network data: Barabasi-Albert (BA) and Watts-Strogatz (WS) 

random graph models

Evaluation goals
• Interaction Loss
• Clustering size
• Efficiency evaluation
• Comparison with competing methods (CPM1, CJA2, CPMap3)

1. V. A. Traag and J. Bruggeman. 2009. Community detection in networks with positive and negative links. Physical Review E 80,3(2009),036115.
2. S. Gómez, P. Jensen, and A. Arenas. 2009. Analysis of community structure in networks of correlated data. Physical Review E 80,1(2009),016114.
3. P. Esmailian and M. Jalili. 2015. Community detection in signed networks: the role of negative ties in different scales. Scientific reports 5(2015),14339.  



Real network data

Table 1: Summary of real networks

Preprocessing of timestamped networks:
• The edge set 𝐸 of the probabilistic graph are obtained by "flattening" the temporal network
• The distributions 𝑝𝑢𝑣

+ and 𝑝𝑢𝑣
− are estimated based on the fraction of clusters shared by 𝑢, 𝑣

over all graphs



Avg. loss values and clustering sizes on real data

• D-MIL outperforms MIL
• MIL_R and D-MIL_R produce better

solutions than MIL and D-MIL
• D-MIL_R is the best performing method

and outperforms competing methods

• D-MIL yelds a smaller number of 
clusters than MIL

• MIL and D-MIL produce more clusters 
than MIL_R and D-MIL_R



Time performances (in seconds) on real data

• MIL is faster than D-MIL
• Running times for MIL_R and D-MIL_R are dominated by 

optimization time (Hill Climbing)
• MIL_R is faster than D-MIL_R
• Competing methods are always outperformed by our algorithms



Comparison with competitors on synthetic data

• Superiority of D-MIL_R w.r.t. 
competing methods in terms of 
effectiveness

• Our algorithms are faster than
competing methods

For the BA model, 𝑚 is the number of edges to attach
with a new vertex

For the WS model, 𝑛𝑒𝑖𝑔ℎ is the distance within which
two vertices will be connected



Conclusions & Future Work

Summary:

• We introduced the problem of optimizing the overall interaction among a set of entities
whose interaction patterns depend on their cluster memberships

• We exploit the connection with correlation clustering to develop both approximation 
algorithms and heuristics (for the minimization formulation)

• Experimental evaluation of our algorithms on both synthetic and real network datasets:

• Better effectiveness and efficiency than competing methods

Future Work:

• Clustering properties:

• Overlapping

• Size bounds

• Probability distributions of interactions are not given



Thank you!
Questions?


