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Min-Disagreement Correlation Clustering 
(Min-CC)

Given an undirected graph 𝐺 = (𝑉, 𝐸), with vertex set 𝑉 and edge set 𝐸 ⊆ 𝑉×𝑉, 
and weights 𝑤!"# , 𝑤!"$ ∈ ℝ%# for all edges 𝑢, 𝑣 ∈ 𝐸, find a clustering 𝒞: 𝑉 → ℕ# that
minimizes:
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• Min-CC is NP-Hard
• APX-Hard even for complete graphs and edge weights 𝑤!"# , 𝑤!"$ ∈ { 0,1 , (1,0)}

Any 𝑤!"# (resp. 𝑤!"$ ) weight
expresses the benefit of clustering 𝑢
and 𝑣 together (resp. separately)



Approximation Algorithms: General vs 
Constrained Min-CC instances
1. General graph and general weights

• Linear Programming + Rounding (LP + R1) with 
𝑂(log 𝑛) approximation guarantees

2. Complete graph and Probability Constraint (PC) 
𝑤!"# +𝑤!"$ = 1 ∀ 𝑢, 𝑣 ∈ 𝐸
• Pivot2 algorithm with constant-factor

approximation guarantees
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1. Charikar Moses, Venkatesan Guruswami, and Anthony Wirth. "Clustering with qualitative information." Journal of Computer and System Sciences 71.3 (2005): 360-383.
2. Ailon Nir, Moses Charikar, and Alantha Newman. "Aggregating inconsistent information: ranking and clustering." Journal of the ACM (JACM) 55.5 (2008): 1-27.



Approximation Algorithms: General vs 
Constrained Min-CC instances
1. General graph and general weights

• Linear Programming + Rounding (LP + R) with 
𝑂(log 𝑛) approximation guarantees

2. Complete graph and Probability Constraint (PC) 
𝑤!"# +𝑤!"$ = 1 ∀ 𝑢, 𝑣 ∈ 𝐸
• Pivot algorithm with constant-factor

approximation guarantees
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Can probability-constraint-aware approximation algorithms (e.g. Pivot) still achieve
guarantees even if the probability constraint is not met? 



Min-CC with Global Weight Bounds: 
Theoretical Results and Algorithms
Global Weight Bound (GWB):
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𝐺 with GWB 𝐺′ with PC 

An 𝛼-approximate clustering on 𝐺′ is also 𝛼-approximate clustering on 𝐺 too 

Construct 𝐺& in linear 
time and space

Clustering 𝐶



Benefits of our result

• Practical benefits: 
• Extend the validity range of the approximation guarantees of 

algorithms for Min-CC (e.g. Pivot)
• Application to feature selection for fair clustering (Next slides)

• Theoretical benefits: enable better theoretical results on complex
problems which exploit Min-CC as a building block

• Benefits for the research community: brand new line of research



Application to fair clustering

Data: 4 real-world relational datasets describing a set of objects 𝑋
defined over a set of attributes 𝐴 (numerical or categorical) that can be 
divided into:
• Fairness-aware (or sensitive) attributes 𝐴0
• Non-sensitive attributes 𝐴¬0



Application to fair clustering

Fair clustering objective:
1. non-sensitive attributes: 

minimize the inter-cluster 
similarities and maximize
the intra-cluster similarities

2. sensitive attributes: 
minimize the intra-cluster 
similarities and maximize
the inter-cluster similarities



Application to fair clustering

Mapping to Min-CC instance:

G = V = X , 𝐸 = 𝑋 × 𝑋 𝑤!"# ≔∝ 𝑠𝑖𝑚9¬" 𝑢, 𝑣 𝑤!"$ ≔∝ 𝑠𝑖𝑚9" 𝑢, 𝑣

Attribute selection for fair clustering. Given a set of objects 𝑋 defined over the 
attribute sets 𝐴: and 𝐴¬:, find maximal subsets 𝑆: ⊆ 𝐴: and 𝑆¬: ⊆ 𝐴¬:, with 
|𝑆:| ≥ 1 and |𝑆¬:| ≥ 1, s.t. the above correlation-clustering weights satisfy the 
global-weight-bounds condition.



Application to fair clustering

Each method finally finds two subsets of attributes so as to satisfy the global condition, and the 
per-dataset best-performing method improves all intra-/inter-cluster similarities and Euclidean
fairness w.r.t. the baseline (‘initial’ in the Table). 



Conclusion & Future Work

Summary:
• We studied for the first time global weight bounds in correlation

clustering
• We derived a sufficient condition to extend the range of validity of 

approximation guarantees beyond local weight bounds, such as the 
probability constraint

Future Work:
• extending our results to other constraints (e.g., triangle inequality) 
• studying the by-product problem of feature selection guided by our

condition



Thanks for your attention!
Questions?



Exp1: Analysis of the global-weight-bounds
condition

Data: 4 real-world graphs augmented with artificially-generated edge
weights, to test different levels of fulfilment (controlled by the 
parameter target ratio) of our global-weight-bounds (GWB) condition. 

Goal: show that a better fulfilment of the GWB corresponds to better
performance (in terms of Min-CC objective) of Pivot with respect to the 
LP algorithms, and vice versa. 

𝑎𝑣𝑔# + 𝑎𝑣𝑔$ ≥ Δ'()

⁄Δ'() 𝑎𝑣𝑔# + 𝑎𝑣𝑔$ ≤ 1

GWB:



Exp1: Analysis of the global-weight-bounds
condition

A better fulfilment of our GWB leads to Pivot’s performance closer to the 
linear programming approach’s one1 (LP+R, for short), and vice versa
1. Charikar Moses, Venkatesan Guruswami, and Anthony Wirth. "Clustering with qualitative information." Journal of Computer and System Sciences 71.3 (2005): 360-383.



Exp1: Analysis of the global-weight-bounds
condition

• Pivot is faster than LP+R
• Pivot yields more clusters than LP+R on all datasets but Football 



Exp2: Application to fair clustering

Mapping to Min-CC instance:
𝑤!"# : = 𝜑#( 𝛼A¬: ⋅ 𝑠𝑖𝑚9#

¬" 𝑢, 𝑣 + 1 − 𝛼A¬: ⋅ 𝑠𝑖𝑚9$
¬" 𝑢, 𝑣 )
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Attribute selection for fair clustering. Given a set of objects 𝑋 defined over the 
attribute sets 𝐴: and 𝐴¬:, find maximal subsets 𝑆: ⊆ 𝐴: and 𝑆¬: ⊆ 𝐴¬:, with 
|𝑆:| ≥ 1 and |𝑆¬:| ≥ 1, s.t. the above correlation-clustering weights satisfy the 
global-weight-bounds condition.


