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Polarization Detection in Social Media

• In real-world (social) graphs interactions can 
be friendly or antagonistic (e.g. friend/foe, 
trust/distrust, agree/disagree).

• Increase of polarization around controversial
issues is a growing concern, with important
societal fallouts.

• Signed networks naturally model this setting: 
nodes represents users, and edges are 
labeled positive (+) or negative (-).

An example of two polarized communities in the 
Congress network. Solid edges are positive, 

while dashed edges are negative. 

𝑆1
𝑆2

Key question: How can we identify the core groups driving the polarization
within a big network?



2-Polarized-Communities (2PC) Problem

Find two non-overlapping communities of nodes, 𝑆1 and 𝑆2, that satisfy three key 
requirements:

Bonchi Francesco, et al. "Discovering polarized communities in signed networks." CIKM 2019.
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The majority of edges within
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The majority of edges across
𝑆1 and 𝑆2 are negative 

A large number of edges satisfying
R1-R2 relative to the total number

of nodes in 𝑆1 and 𝑆2



Quantifying Polarization: The Polarity
Objective Function
Given a signed graph 𝐺 = 𝑉, 𝐸+, 𝐸− , find two non-overlapping communities, 
𝑆1, 𝑆2 ⊆ 𝑉, that maximizes the polarity objective function:

Bonchi Francesco, et al. "Discovering polarized communities in signed networks." CIKM 2019.

𝑝 𝑆1, 𝑆2; 𝐺 =
σ𝑖 ∈{1,2}(|𝐸

+(𝑆𝑖)| − |𝐸− 𝑆𝑖 |) + |𝐸− 𝑆1, 𝑆2 | − |𝐸+ 𝑆1, 𝑆2 |

|𝑆1 ∪ 𝑆2|

where 𝐸± 𝑆𝑖 , 𝑆𝑗 = { 𝑢, 𝑣 ∈ 𝐸±: 𝑢 ∈ 𝑆𝑖 , 𝑣 ∈ 𝑆𝑗} and 𝐸± 𝑆𝑖 = 𝐸± 𝑆𝑖 , 𝑆𝑖

Idea: prefer the 𝑆1, 𝑆2 that:
➢ have many compliant and few noncompliant edges (R1-R2)
➢ the size of 𝑆1 ∪ 𝑆2 is as small as possible (R3)



The Densest Subgraph (DS) Problem

Given an undirected graph 𝐺 = 𝑉, 𝐸 , 
find 𝑆∗ ⊆ 𝑉 such that:

Andrew V Goldberg. 1984. Finding a maximum density subgraph. (1984).

𝑆∗ = argmax𝑆⊆𝑉
𝐸 𝑆

𝑆
= argmax𝑆⊆𝑉

σ𝑣∈𝑆 𝑑𝑆 𝑣

𝑆

• Unlike 2PC, the DS problem can be solved
exactly in polynomial time

• An effective and efficient approximation
solution is the greedy peeling algorithm: it
iteratively removes the node with the lowest
degree and returns the intermediate subgraph
with the highest density. 

𝑆∗



Bridging 2PC and DS

2PC polarity (reframed)
DS density

Key concept: Net Degree Balance
For any node u, its net degree balance w.r.t. a 
pair of polarized communities 𝑆 = {𝑆1, 𝑆2} is

#compliant edges
(incident to u)

#noncompliant edges
(incident to u)

𝑑𝑆
± 𝑢 = -

𝑝 𝑆1, 𝑆2; 𝐺 =
σ𝑢∈𝑆1∪𝑆2

𝑑𝑆
± 𝑢

|𝑆1 ∪ 𝑆2|

(average net degree balances) (average simple degrees)

σ𝑣∈𝑆 𝑑𝑆 𝑣

𝑆

Key insight: The 2PC problem is a generalization of the DS problem. 
This connection allows us to adapt powerful DS algorithms to solve the 2PC problem.



Greedy-2PC: a greedy peeling algorithm
for 2PC

Observation. The eigenvector 𝑧∗ corresponding
to the largest eigenvalue 𝜆1 of 𝐀 is an optimal
solution of the relaxed problem of 2PC.

Moses Charikar. "Greedy approximation algorithms for finding dense components in a graph." APPROX 2003.



Greedy-2PC: a greedy peeling algorithm
for 2PC

Overview of Greedy-2PC at the i-th iteration



Key Benefits of Greedy-2PC

Highly efficient.
Runs in linear time, 𝑂 𝑉 + 𝐸 .

Effective in practice.
Consistently outperforms SOTA methods.

Simple to implement.

Theoretical (additive) guarantees.

Under condition 𝑆1
∗ ⊆ 𝑆1

seed, 𝑆2
∗ ⊆ 𝑆2

seed, 𝑝 ෡𝑆1,෢𝑆2; 𝐺 ≥ 𝑂𝑃𝑇 − 𝑐, where 𝑐 is a 

term related to the (maximum) #noncompliant edges of the peeled nodes.



Experimental Evaluation: Datasets

Real-World Datasets

Synthetic Datasets

We used the modified Signed Stochastic
Block Model (m-SSBM) to generate 
synthetic graphs, controlling over ground-
truth community size and noise level (𝜂).

11 real-world networks + 2 augmented
(dummy vertices with random edges
matching average degree, preserving
negative-edge ratio)



Experimental Evaluation: Competing
Methods and Evaluation Criteria
Competing methods

• SOTA for 2PC: Neural2PC1 (neural), RH2 (heuristic), Eigen3 & R-Eigen3 (spectral).
• Related Baselines: SPONGE4, BNC5 & SSSNet6 (signed graph clustering), Timbal7

(balanced subgraph), Pivot8 (correlation clustering).

Evaluation criteria

• Polarity (pol.): 2PC objective function
• Agreement ratio (a.r.): fraction of compliant edges in the subgraph induced by 

the detected communities. 
• F1-score w.r.t. the ground-truth communities (synthetic networks)
1. Gullo Francesco, et al. ’’Neural discovery of balance-aware polarized communities’’ Machine Learning 2024
2. Jingbang Chen, et. al. ‘’ Scalable Algorithm for Finding Balanced Subgraphs with Tolerance in Signed Networks’’ KDD 2024
3. Bonchi Francesco, et al. ‘’Discovering polarized communities in signed networks’’ CIKM 2019.
4. Mihai Cucuringu, et. al. ‘’ SPONGE: A generalized eigenproblem for clustering signed networks.’’ AISTATS 2019
5. Kai-Yang Chiang, et al. ‘’ Scalable clustering of signed networks using balance normalized cut’’ CIKM 2012
6. Yixuan He, et al. ‘’ SSSNET: semi-supervised signed network clustering’’ SDM 2022
7. Bruno Ordozgoiti, et al. ‘'Finding large balanced subgraphs in signed networks’’ WWW 2020
8. Nikhil Bansal, et al. ‘’Correlation Clustering’’ Machine Learning 2004



Results on Real-World Data

Table. Polarity («pol.») and edge-agreement ratio («a.r.») of the proposed method vs. competing methods1 on real datasets. 

Best polarity results in bold, second-best underlined.

1. we report only the strongest competitors for effectiveness; full tables are in the paper.

• Greedy-2PC achieves the best polarity: +~1% vs Neural2PC on 5 datasets and +~5% on WikiCon;
+~4% vs RH on Bitcoin and +~3% on Cloister/WikiCon/Word.



Efficiency Results

• Greedy-2PC is 1– 4 × faster than Neural2PC and beats RH on 6/11 datasets—Bitcoin, Cloister, 
Congress, HTribes, TwitterRef, WikiEle—while remaining comparable on larger networks.



Scalability Results

• On augmented Epinions/WikiCon, Greedy-2PC scales linearly and finishes in 7.13h in the worst case, 
while Pivot/SSSNet/Neural2PC do not complete within the 24h timeout on the largest instances.



Results on Synthetic Data

Table. Greedy-2PC vs. baselines on synthetic datasets (averaged over 10 graphs per setting), varying noise 𝜂 while

keeping network and community size to 1000 and 100, respectively.

• On synthetic graphs with increasing noise (η), Greedy-2PC is robust and typically best (with 
Neural2PC) in both F1 and polarity



Conclusions & Future Work

Summary
• We established a link between the 2PC problem in signed networks and 

the DS problem.
• We proposed Greedy-2PC, a linear-time algorithm inspired by DS 

methods, and showed its superior effectiveness and efficiency on real-
world and synthetic datasets compared to existing approaches.

• This work opens the door to applying the rich densest-subgraph
literature to solve other challenging problems in signed network analysis.

Future Work
• Extend the approach to handle more than two communities, relax 

theoretical assumption, and explore applications in weighted and directed
graphs.



Thank you!
Questions?
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